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Abstract
1.	 Variation	 in	 antecedent	 (past)	 climate	 conditions	 is	 likely	 to	 govern	 tree	 growth	
over	long	periods	of	time.	Antecedent	conditions	are	rarely	considered	in	models	of	
tree	 growth,	 representing	 a	 weakness	 in	 quantitative	 understanding	 of	 forest	
	responses	to	climate	variations.

2.	 We	 applied	 the	 stochastic	 antecedent	 modelling	 (SAM)	 framework	 to	 367	
International	 Tree	 Ring	 Data	 Bank	 chronologies	 in	 the	 southwestern	 US	
(“Southwest”)	representing	eight	conifer	species.	To	better	understand	climatic	and	
physiologic	controls	on	tree	growth,	we	quantify	the	effects	of	antecedent	precipi-
tation,	 temperature	 and	 Palmer	 Drought	 Severity	 Index	 (PDSI)	 over	 60	months	
	preceding	and	including	the	year	of	ring	formation.

3. In Pinus edulis,	 Pinus ponderosa and Pseudotsuga menziesii,	 growth	 responded	
	primarily	 to	 recent	 precipitation	 and	 temperature	 conditions	 (43%–49%	 of	 the	
	response	was	driven	by	conditions	during	the	year	of	ring	formation),	but	to	less	
recent	 PDSI	 conditions	 (>50%	 of	 response	 driven	 by	 conditions	 13–48	months	
prior	to	the	year	of	ring	formation),	though	PDSI	significantly	affected	growth	at	
only	21%	of	sites.	Combining	extensive	tree-ring	data	with	monthly	resolution	cli-
mate	data	also	reveals	key	climatic	events,	such	as	the	effect	of	monsoon	arrival	
date	on	growth,	especially	in	P. menziesii,	highlighting	the	ability	of	the	SAM	frame-
work	to	identify	climate	effects	at	multiple	time-scales.

4.	 Sensitivity	 to	 antecedent	 climate,	 baseline	growth	at	 average	 climate	 conditions	
and	the	strength	of	first	order	autocorrelation	varied	spatially,	suggesting	variation	
in	mean	growing	conditions,	non-structural	carbohydrate	storage,	and/or	seasonal	
precipitation	contribution	of	the	North	American	Monsoon	may	drive	differences	
in	growth	sensitivities	across	species’	ranges.

5. Synthesis.	Our	 findings	provide	 further	 evidence	 for	multi-year	 legacy	effects	of	
climate	 conditions,	 particularly	 drought	metrics,	 on	 tree	growth.	Antecedent	 cli-
mate	and	especially	drought	are	key	drivers	of	growth	in	these	species,	and	associ-
ated	climatic	sensitivities	and	growth	indices	vary	spatially.	We	argue	such	factors	
should	be	considered	in	modelling	efforts.	The	spatial	variability	in	antecedent	cli-
mate	sensitivities	points	to	key	differences	in	how	different	populations	within	a	
species	 range	may	 respond	 to	 climate	 change,	 particularly	 if	 timing	 of	 weather	
events,	such	as	monsoon	arrival	date,	or	annual	precipitation	amounts	undergoes	
significant	changes.
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1  | INTRODUCTION

Trees	are	 long-	lived	organisms,	 integrating	climate	and	physiological	
conditions	over	 long	periods	 to	produce	biomass	 at	 the	expense	of	
competing	physiological	 processes	 such	as	 reproduction,	 respiration	
and	 defence	 (Fritts,	 1976).	 While	 antecedent	 (past)	 conditions	 are	
critical	determinants	of	tree	growth	(Ogle	et	al.,	2015;	Peltier,	Fell,	&	
Ogle,	2016),	particularly	under	stressful	conditions	(Jenkins	&	Pallardy,	
1995;	Stahle,	Cleaveland,	&	Hehr,	1985;	Tainter,	Retzlaff,	Starkey,	&	
Oak,	1990),	explicit	accounting	of	antecedent	climate	and	physiolog-
ical	states	in	growth	models	is	rare.	When	antecedent	climate	is	con-
sidered,	 approaches	 to	 selection	 vary	widely	 (Bond-	Lamberty	 et	al.,	
2014;	Tingley	et	al.,	2012).	Here,	we	apply	a	new	modelling	approach	
(Ogle	 et	al.,	 2015),	 recently	 applied	 to	 diverse	 ecological	 processes	
(Barron-	Gafford	 et	al.,	 2014;	 Cable	 et	al.,	 2013;	 Dal	 Bello,	 Rindi,	 &	
Benedetti-	Cecchi,	 2017;	 Ryan	 et	al.,	 2015,	 2017),	 to	 address	 these	
issues	 by	 directly	 determining	 temporal	 lags	 between	 tree	 growth	
and	 its	exogenous	 (e.g.	climatic)	drivers	across	the	southwestern	US	
(“Southwest”).

Dendrochronologists	 have	 gathered	 large	 amounts	 of	 tree-	ring	
data,	which	can	be	used	to	evaluate	factors	driving	tree	growth.	Site	
selection	to	avoid	ecological	influences	such	as	competition,	pests,	and	
fire,	and	sampling	near	range	limits	or	harsh	microenvironments	is	key	
to	avoiding	“complacent”	trees	(Douglass,	1937),	though	mesic	micro-
habitats	may	also	contain	strong	climate	signals	(Carrer,	Motta,	&	Nola,	
2012).	Potential	influences	of	such	factors	are	typically	“removed”	by	
detrending	techniques	to	create	standardized	ring-	width	indices,	sub-
sequently	averaged	across	trees	to	produce	a	stand-	level	chronology	
(Fritts	&	Swetnam,	1989).	Chronologies	are	often	used	to	understand	
correlations	between	 tree	or	 stand	 annual	 growth	 and	 specific	 past	
climate	variables,	such	as	monthly	maximum	temperatures	in	the	sum-
mer	preceding	each	growth	period	(e.g.	Di	Filippo	et	al.,	2007).	While	
orthogonal	multiple	 regression	 approaches	 are	 commonly	 employed	
(“response	functions,”	Blasing,	Solomon,	&	Duvick,	1986;	Fritts,	1962),	
monthly	correlations	are	still	sometimes	independently	estimated	(e.g.	
Grace	&	Norton,	1990;	Kirdyanov,	Vaganov,	&	Hughes,	2007).	Lagged	
correlations	between	growth	and	previous	year’s	winter	precipitation,	
summer	maximum	temperature,	or	summer	precipitation	are	common,	
yet	correlations	with	“older”	climate	variables	are	rarely	studied	 (but	
see	Bond-	Lamberty	et	al.,	 2014;	Johnson	&	Risser,	1973;	Wilmking,	
Juday,	Barber,	&	Zald,	2004).

There	is	mounting	evidence	that	tree	growth	responds	to	climatic	
conditions	 occurring	 more	 than	 1	year	 before	 the	 onset	 of	 growth,	
particularly	in	the	context	of	changing	climate.	Application	of	a	novel	
statistical	model	to	raw	tree-	ring	widths	for	Pinus edulis	in	southeastern	
Colorado,	USA	found	that	precipitation	conditions	experienced	2	years	
prior	to	the	growth	year	 influenced	growth	(Ogle	et	al.,	2015).	There	

is	some	evidence	of	effects	of	climate	3	years	prior	to	ring	formation	
(Mäkinen	et	al.,	2002;	Mazza	&	Manetti,	2013)	and	in	rare	cases,	signif-
icant	correlations	between	growth	and	climate	occurring	up	to	6	years	
prior	 to	 ring	 formation	 have	 also	 been	 found	 (Becker,	 1989;	 Peltier	
et	al.,	2016;	Sarris,	Christodoulakis,	&	Koerner,	2007).	Another	class	of	
studies	relates	tree	mortality	to	drought	events	occurring	ten	or	more	
years	ago	 (e.g.	Bigler,	Gavin,	Gunning,	&	Veblen,	2007),	while	 recent	
large-	scale	syntheses	point	to	lags	or	legacy	effects	of	drought	on	tree	
growth	on	the	order	of	about	2–4	years	in	the	Southwest	(Peltier	et	al.,	
2016)	and	world-	wide	(Anderegg	et	al.,	2015).

To	 address	 these	 limitations,	we	 leveraged	 the	 large	 quantity	 of	
available	tree-	ring	chronologies	to	gain	a	more	complete	understand-
ing	of	how	antecedent	climate	controls	stand-	level	tree	growth.	Using	
data	obtained	from	the	International	Tree	Ring	Data	Bank	(ITRDB),	we	
implement	 the	 recently	 developed	 stochastic	 antecedent	 modelling	
(SAM)	 framework	 (Ogle	et	al.,	 2015)	 to	 address	 the	 following	ques-
tions:	 (1)	 how	 do	 monthly	 precipitation,	 temperature,	 and	 drought	
stress	experienced	up	to	4	years	prior	to	ring	formation	influence	tree	
growth?	(2)	How	do	the	time-	scales	of	influence	(including	time-	lags)	
of	these	climatic	variables	vary	among	multiple	dominant	tree	species?	
and	(3)	how	do	these	antecedent	effects	(sensitivities	and	time-	lags)	
vary	spatially	across	the	Southwest?	Simultaneous	estimation	of	the	
effects	of	key	antecedent	climate	variables,	 their	 interactive	effects,	
and	 their	 time-	scales	 of	 influence	 is	 accomplished	 by	 applying	 the	
SAM	 framework	 to	 century-	long	 annual	 tree-	ring	 chronologies	 and	
monthly	climate	time-	series	data.	Such	analyses	have	the	potential	to	
greatly	improve	our	understanding	of	the	lagged	and	interacting	fac-
tors	controlling	tree	growth	in	this	region.

2  | MATERIALS AND METHODS

2.1 | Data sources, selection and processing

All	 available	 chronologies	 from	 Arizona,	 Utah,	 Colorado	 and	 New	
Mexico	were	downloaded	from	the	ITRDB	portal	via	r	(R	Core	Team,	
2016)	during	September	2015.	Chronology	files	were	 imported	 into	
r	using	the	dplr	package	(Bunn,	2008).	Chronologies	were	truncated	
at	1905	(used	data	for	1906	onward)	to	match	availability	of	historic	
monthly	climate	data:	total	precipitation,	mean	temperature	and	self-	
calibrating	Palmer	drought	severity	index	(hereafter,	PDSI).	We	chose	
the	self-	calibrating	 index	over	the	classical	formulation	because	 it	 is	
more	comparable	across	regions	(Dai,	Trenberth,	&	Qian,	2004),	easily	
available,	widely	used	and	straightforward	 to	understand.	The	PDSI	
(2.5°	 resolution)	 data	were	 obtained	 from	NOAA	 (Dai	 et	al.,	 2004).	
Monthly	precipitation	and	temperature	data	were	obtained	from	the	
Climatic	Research	Unit	TS3.10	dataset,	a	gridded	(0.5°)	climate	prod-
uct	(Harris,	Jones,	Osborn,	&	Lister,	2014).

K E Y W O R D S

ecological	memory,	ecophysiology,	legacy	effects,	non-structural	carbohydrates,	Pinus edulis,	
Pinus ponderosa,	Pseudotsuga menziesii,	tree–growth–climate	interactions
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After	 preliminary	 analyses,	we	 reduced	 the	 number	 of	 species	
to	 the	 eight	 best-	represented	 species	 in	 our	 ITRDB	 dataset	 (367	
chronologies,	 all	 conifers,	 total	N	=	28,530	 annual	 growth	 indices	
representing	more	 than	10,000	 trees):	Picea engelmannii	 Parry	 Ex.	
Engelm.	 (PCEN;	 Engelmann	 spruce),	 Pinus aristata	 Engelm.	 (PIAR;	
bristlecone	pine),	Pinus contorta	Dougl.	Ex.	Loud.	 (PICO;	 lodgepole	
pine),	P. edulis	Engelm.	(PIED;	pinyon	pine),	Pinus flexilis	James	(PIFL;	
limber	 pine),	 Pinus ponderosa	 Dougl.	 Ex.	 Laws.	 (PIPO;	 ponderosa	
pine),	 Pinus strobiformis	 Engelm.	 (PIST;	 Southwestern	 white	 pine)	
and Pseudotsuga menziesii	(Mirb.)	Franco	(PSME;	Douglas	fir).	Three	
species	(P. ponderosa,	P. edulis and P. menziesii)	constituted	87.5%	of	
this	dataset	(Figure	1).

We	note	 that	 the	 ITRDB	chronologies	were	produced	by	a	vari-
ety	of	detrending	techniques,	which	we	do	not	account	for	because	
this	 information	 is	not	universally	available	 in	 the	 ITRDB.	While	de-
trending	 choices	 made	 in	 producing	 these	 chronologies	 may	 alter	
the	 strength	of	 the	 signals	we	detect,	 use	of	 tree-	ring	 chronologies	
to	make	inference	about	lagged	responses	has	precedence	(Anderegg	
et	al.,	2015).	Working	with	raw	ring-	width	data	and	incorporating	an	
age-	detrending	model	at	the	core	level	would	seem	like	a	potentially	
powerful	and	more	appropriate	method	for	detecting	lagged	effects	of	
climate	(Peltier	et	al.,	2016).	However,	combining	this	type	of	approach	
with	the	computationally	demanding	SAM	framework	is	computation-
ally	impractical	at	this	time.	Thus,	to	explore	tree–growth–climate	rela-
tionships	at	a	regional	scale	using	the	SAM	approach,	we	have	elected	
to	use	stand-	level,	detrended	chronologies.

2.2 | Model description

The	principles	 and	motivation	underlying	 the	SAM	framework	have	
been	described	elsewhere	(Ogle	et	al.,	2015;	also	see	Ogle	&	Barber,	
2016	for	additional	examples),	including	a	simple	application	to	tree-	
ring	widths	representing	10	trees	of	a	single	species	at	one	site.	Here,	
we	extend	the	SAM	framework	to	include	different	sites	(chronologies)	

and	species.	We	refer	 to	the	annual	 tree-	ring	chronology	 indices	as	
“growth.”	The	definition	of	antecedent	variables	and	their	effects	on	
the	response	(i.e.	annual	tree	growth)	constitute	the	key	concept	of	
the	SAM	model.	An	antecedent	variable	is	defined	as	a	weighted	aver-
age	of	past	observed	values.	These	antecedent	variables	are	used	as	
covariates	in	the	regression	of	tree	growth	on	climate,	each	having	its	
own	effect	parameter	as	in	classical	linear	regression.

To	illustrate,	let	Pant
y,c
	denotes	antecedent	precipitation,	constructed	

for	 year	 y	 and	 site	 (or	 chronology)	 c;	 chronology	 is	 analogous	 to	 a	
unique	species-	site	combination,	and	only	one	species	occurs	at	each	
site.	Thus,	for	simplicity	we	refer	to	chronologies	as	sites.	Let	Py-t,m,c de-
notes	monthly	precipitation	associated	with	site	c	for	month	m	(m	=	1,	
2,	…,	12	for	January,	February,	…,	December)	and	for	t	years	into	the	
past	(t	=	0,	1,	…,	4	for	current	year,	last	year,	…,	4	years	prior)	relative	
to	year	y.	This	5-	year	period	 follows	 (Ogle	et	al.,	2015)	and	 is	 com-
parable	to	the	maximum	recovery	time	following	drought	 (Anderegg	
et	al.,	2015;	Peltier	et	al.,	2016),	though	longer	lags	could	be	consid-
ered.	Further,	 let	wt,m,s,v	denotes	 the	antecedent	 importance	weight,	
estimated	for	year	t	into	the	past,	month	m,	species	s	(s	=	1,	2,	…,	8),	
and variable v	(e.g.	v	=	1	for	precipitation).	Then,

where s(c)	indicates	the	species	s	associated	with	site	c.	Antecedent	tem-
perature	(Tant)	and	drought	(Dant)	are	constructed	identically,	each	with	
their	 own	 unique	 species-	specific	weights	 (wt,m,s,2 and wt,m,s,3,	 respec-
tively).	Precipitation,	temperature	and	drought	conditions	occurring	after	
the	cessation	of	growth	cannot	effect	ring	width	during	the	same	year,	
thus	weights	for	October,	November	and	December	(m	=	10,	11,	12)	of	
the	current	year	 (t	=	0)	are	fixed	at	zero	for	all	 three	climate	variables.	
While	growth	cessation	date	may	vary	across	sites	or	years,	most	species	
in	this	region	cease	forming	rings	in	September	(Adams	&	Kolb,	2005;	
Barger	&	Woodhouse,	2015;	Fritts,	Smith,	Cardis,	&	Budelsky,	1965).

(1)Pant
y,c

=

4
∑

t=0

12
∑

m=1

wt,m,s(c),1 ⋅Py−t,m,c

F IGURE  1 Chronology	locations	of	the	three	best-	represented	species	(PIED,	Pinus edulis,	squares;	PIPO,	Pinus ponderosa,	diamonds;	and	
PSME,	Pseudotsuga menziesii,	triangles),	overlaid	on	the	spatial	variability	(0.5°	resolution)	in	(a)	mean	annual	precipitation	(MAP,	mm/year)	and	
(b)	maximum	temperature	of	the	warmest	month	(MTWM,	°C)
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We	extend	 the	weights	 to	 some	 past	 time	 point	 (i.e.	 4	years	
ago)	 to	 allow	 the	 data	 to	 inform	 the	 importance	 of	 past	 condi-
tions,	 rather	 than	 imposing	 an	 ad	 hoc	 selection	 of	 only	 a	 single	
previous	year’s	climate	covariates	(e.g.	previous-	July	temperature	
or	 previous-	April	 precipitation).	 Because	 we	 assume	 the	 ability	
of	 the	 model	 and	 data	 to	 resolve	 unique	 monthly	 weights	 de-
clines	with	 time	 into	 the	 past	 (Figure	2),	 we	 estimate	 individual	
monthly	weights	 for	 only	 the	most	 recent	 2	years	 (t	=	0	 and	 1).	
Further	 into	 the	 past,	 we	 only	 estimate	 six	 weights	 represent-
ing	 periods	 of	 2	months	 for	 t	=	2	 (i.e.	we	 assume	w2,1,s,v = w2,2,s,v 
and w2,3,s,v = w2,4,s,v),	and	for	t	=	3	and	4,	we	estimate	four	unique	
weights	 for	 each	 year	 t	 (assume	 wt,1,s,v = wt,2,s,v = wt,3,s,v and 
wt,4,s,v = wt,5,s,v = wt,6,s,v,	 etc.).	 Thus,	 while	 each	 species’	 set	 of	
weights	has	60	components,	 there	are	only	35	 “free”	weight	pa-
rameters	estimated	for	each	species;	the	remaining	25	weights	are	
either	fixed	at	zero	(post	ring	formation	in	t	=	0)	or	set	equal	to	one	
of	the	35	free	weight	parameters	(see	Figure	2).	Monthly	weights	
are	constrained	to	sum	to	one	across	all	t and m	for	each	species	s 
and variable v.	We	also	compute	annual	weights	Wt,s,v	for	each	cal-
endar year t	into	the	past	by	summing	the	month	weights	(ws)	over	
all	months	m.	While	we	considered	 the	use	of	more	ecologically	
meaningful	 “hydrologic	years,”	 any	 such	delineation	 is	 inherently	
arbitrary,	 and	would	 likely	differ	 across	 species	 (or	within	 a	 spe-
cies’	range).	With	the	concept	of	antecedent	variables	established,	
we	continue	to	specify	the	model.

The	 data	model	 gives	 the	 likelihood	 of	 the	 observed	 growth	G,	
where	we	define	G	=	log(RWI	+	1),	where	RWI	 is	 the	site	ring-	width	
index	obtained	from	the	ITRDB	chronology	files.	We	assume	a	normal	
distribution	for	G,	with	mean	μ and variance σ2.	The	data	and	expected	
(mean)	log-	scale	RWI	vary	at	the	level	of	year	y	and	site	c:

Expected,	 log-	scale	growth	 (μ)	 is	modelled	as	a	 function	of	 the	
antecedent	 climate	 covariates	 of	 precipitation	 (Pant),	 temperature	
(Tant)	 and	 PDSI	 (Dant)	 at	 each	 site	 (c),	 along	with	 an	 intercept	 and	
1st-	order	 autoregressive	 term	 for	 each	 site.	 Based	 on	 preliminary	
analyses,	we	also	found	it	useful	to	include	the	Pant × Dant and Tant × 
Dant	two-	way	interactions;	we	did	not	include	a	Pant × Tant	interaction	
as	Dant	represents	a	nonlinear	interaction	between	precipitation	and	

temperature.	On	the	original	RWI	scale,	a	typical	1st-	order	autore-
gressive	model	assumes	RWIy = αRWIy-1;	on	the	transformed	scale,	
this	 implies	Gy	=	log(αRWIy-1	+	1).	The	 log-	scale	model	also	 implies	
multiplicative	effects	of	the	covariates	on	the	raw	scale	(i.e.	for	RWI),	
an	approach	 that	worked	well	 in	a	previous	application	of	SAM	to	
tree-	ring	 data	 (Ogle	 et	al.,	 2015).	We	 assume	 climate	 and	 the	 au-
toregressive	process	simultaneously	affect	growth,	and	the	effects	
of	these	predictor	variables	are	denoted	by	α;	we	allow	for	each	α	to	
vary	by	site	c	such	that:

Thus,	conditional	on	 the	antecedent	covariates,	Equation	(3)	can	
be	 viewed	 as	 a	 linear	 regression	 with	 random	 coefficients	 αc,p	 (for	
p	=	1,	2,	…,	7	parameters).	However,	the	antecedent	variables	are	not	
fixed	covariates,	as	in	a	typical	linear	regression,	and	are	functions	of	
the	 unknown	weights	 as	 in	 Equation	(1).	 This	 results	 in	 a	 nonlinear	
	regression	when	not	conditioning	on	the	antecedent	variables.

2.3 | Prior specification

We	implemented	the	model	(Equations	1–3)	in	a	hierarchical	Bayesian	
framework.	We	assumed	a	hierarchical	model	(prior)	for	the	site-	level	
regression	parameters	(αs),	which	vary	around	species-	level	means,	μα,	
with	species-	level	variances,	σα

2,	such	that	for	parameter	p:

In	the	case	of	α7,c,	the	autoregressive	effect,	this	prior	was	restricted	to	
positive	values	(normal	prior	truncated	at	zero),	as	would	be	consistent	
for	an	AR(1)	model.

Except	 for	 the	 autoregressive	 effects,	 the	 species-	level	 parame-
ters	were	also	modelled	hierarchically	with	global	means	(Mαp

)	and	vari-
ances	(S2

αp
)	such	that	for	species	s	and	parameter	p	(p	≠	7):

This	hierarchical	prior	allowed	us	 to	obtain	more	precise	param-
eter	estimates	for	species	associated	with	comparably	few	chronolo-
gies.	Global	parameters,	Mαp

 and Sαp	(standard	deviations),	were	given	

(2)Gy,c∼Normal(μy,c,σ
2)

(3)
μy,c = αc,1 + αc,2P

ant
y,c

+ αc,3T
ant
y,c

+ αc,4D
ant
y,c

+ αc,5P
ant
y,c

Dant
y,c

+ αc,6T
ant
y,c

Dant
y,c

+ log (αc,7RWIy−1,c + 1)

(4)
αc,p∼Normal(μαs(c),p ,σ

2
αs(c),p

)

(5)
μαp,s

∼Normal(Mαp
,S2
αp
)

F IGURE  2 Example	patterns	of	the	60	monthly	weights	(wt,m).	Following	our	assumption	of	declining	resolution	with	greater	time	into	the	
past,	weights	that	are	constrained	to	be	equal	to	neighbouring	weights	are	denoted	by	filled	circles	linked	by	lines.	Unfilled	circles	represent	
unconstrained	weights	that	can	differ	from	neighbouring	weights.	The	monthly	weights	for	October,	November	and	December	of	the	year	of	
ring	formation	are	constrained	to	be	exactly	0,	as	these	represent	time	periods	that	are	expected	to	occur	after	the	average	cessation	of	the	
growing	season.	All	other	weights	are	treated	as	unknown	and	estimated	as	part	of	the	stochastic	antecedent	modelling	(SAM)	framework
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diffuse	 Normal(0,	 10,000)	 and	 Uniform(0,	 100)	 priors,	 respectively.	
The	species-	level	autoregressive	parameter	(μαs,7)	and	standard	devia-
tions	(σαs,p)	were	assigned	independent	Uniform(0,100)	priors.

We	note	that	all	climate	covariates	are	centred	on	their	site-	level	
mean	values	(averaged	across	all	years).	Thus,	we	can	compute	indices	
of	baseline	growth	(G*)	at	average	climate	conditions	at	both	the	site-		
and	species-	level	such	that:

where G*	 is	 the	 log-	scale	 and	 RWI*	 is	 the	 ring-	width	 index-	scale	
baseline	 growth	 term,	 respectively;	 x = c	 for	 site	 (with	A = α)	 or	 s 
for	 species	 (with	A = μα).	RWIs	 is	 the	average	 ring-	width	 index	 for	
species	s,	averaged	across	all	years	and	chronologies	considered	in	
this	study.

In	addition	to	estimating	the	“overall”	effects	(αs	and	μαs)	and	the	
baseline	growth	terms	(G*	and	RWI*),	we	also	estimate	the	weight	pa-
rameters	(ws	[monthly]	and	Ws	[annual]).	Loosely,	we	might	view	the	
effects	as	 indicating	the	growth	sensitivity	to	antecedent	conditions	
and	 the	weights	 as	 the	 temporal	 pattern	of	 the	 antecedent	 effects.	
So	that	antecedent	weights	sum	to	1	across	years	t	and	months	m	for	
each	covariate	(Pant,	Tant and Dant)	and	species	s,	we	define	ws,v	to	be	
the	vector	of	the	35	“free”	weights	for	each	species	s and variable v,	
and	give	ws,v	a	vague	Dirichlet	prior:

This	prior	results	 in	the	prior	expectation	that	all	35	weights	are	
the	same.

2.4 | Implementation

The	model	was	 implemented	 in	 JAGS	4.0.0	 (Plummer,	 2003)	 via	 the	
package	rjags	(Plummer,	2013)	in	r	(R	Core	Team,	2016)	using	super-
computing	resources	at	Northern	Arizona	University	(https://nau.edu/
hpc).	Three	parallel	MCMC	chains	were	used	to	sample	from	the	poste-
rior	parameter	space	and	assessed	for	convergence.	All	iterations	dur-
ing	the	burn-	in	phase	(pre-	convergence)	were	discarded	and	the	model	
was	 updated	 again	 to	 obtain	 ≥3,000	 relatively	 independent	 samples	
after	thinning.

2.5 | Posterior analyses

Posterior	distributions	for	each	parameter	are	summarized	by	the	
posterior	mean,	 standard	deviation,	 and	95%	central	 credible	 in-
terval	(CI)	defined	by	the	2.5th	and	97.5th	percentiles	of	the	mar-
ginal	posterior	distributions.	To	explore	spatial	patterns	in	baseline	
growth	(RWI

∗

c
),	antecedent	climate	and	endogenous	autoregressive	

effects	(αs),	we	conducted	classical	linear	regressions	of	site-		(i.e.	
chronology-	)	 level	parameters	 (posterior	means	 for	each	αc,p and 
RWI

∗

c
)	 on	 centred	 latitude,	 longitude	 and	 their	 interaction	 (de-

grees),	for	each	of	the	three	best-	represented	species	(P. menziesii,	
P. ponderosa and P. edulis)	 using	 the	 base	 r	 (R	Core	Team,	 2016)	
lm	function.

3  | RESULTS

3.1 | Model fit

A	regression	of	predicted	vs.	observed	G	data	yielded	R2	=	0.59,	which	
we	may	expect	to	improve	with	higher	resolution	climate	data	(here,	
0.5°	 for	 precipitation	 and	 temperature;	 2.5°	 for	 PDSI).	 The	 model	
showed	slight	bias	(slope	of	predicted	vs.	observed	=	1.04),	with	slight	
overestimation	of	growth	at	low	RWI	and	slight	underestimation	at	high	
RWI.	Species-	specific	R2	values	were	roughly	similar	for	most	species	
(R2	=	0.56–0.61),	but	were	as	low	as	R2	=	0.48	(PIAR,	PICO)	and	as	high	
as	R2	=	0.80	(PCEN;	Figure	S1).	Regression	of	predicted	vs.	observed	G 
data	for	each	site	gave	the	highest	R2s	in	the	southwestern	portion	of	
the	region	and	lowest	in	the	northeastern	portion	(Figure	S2).

3.2 | Parameter estimates

Posterior	means,	 standard	deviations	and	95%	CIs	 for	all	model	pa-
rameters	 are	 reported	 in	Tables	S1–S3	 and	 Figure	S3,	 including	 the	
site-	,	species-		and	global-	level	means	and	standard	deviations.	Here,	
we	focus	on	site-	level	baseline	growth	indices,	autoregressive	terms,	
antecedent	climate	effects	and	antecedent	importance	weights.

3.3 | Site- level effects

Site-	(or	chronology-	)	level	baseline	growth	(RWI
∗

c
)	was	significantly	

greater	than	zero	across	all	sites,	with	an	average	posterior	mean	of	
1.076	(Figure	3a).	However,	RWI

∗

c
	varied	about	5-	fold	across	sites,	

from	0.278	±	0.084	(posterior	mean;	a	PSME	site)	to	1.456	±	0.060	
(a	 PIED	 site).	 Most	 (84%)	 of	 the	 site-	level	 Pant	 effects	 (α2)	 were	
significantly	positive	 (Figure	3b),	73%	of	 the	Tant	effects	 (α3)	were	
significantly	 negative	 (Figure	3c),	 and	 21%	 of	 the	 Dant	 effects	
(α4)	 were	 significantly	 positive	 except	 for	 two	 eastern	 PIED	 sites	
(Figure	3d).	Only	8%	of	the	Pant	× Dant	effects	(α5)	were	significantly	
negative,	and	only	for	a	subset	of	PIED	and	PIPO	sites	(Figure	3e).	
There	were	no	significant	site-	level	Tant × Dant	effects	(α6;	thus,	re-
sults	 not	 shown).	Depending	 on	 species	 and	 site,	 the	 autoregres-
sive	term	 (α7)	varied	from	relatively	strong	 (some	PCEN	sites;	e.g.	
α7	=	0.522	[0.412,	0.645])	to	extremely	weak	(some	PIPO	sites;	e.g.	
α7	=	0.0003	[0.000006,	0.0012])	 (Figure	3f);	 the	prior	for	α7 elimi-
nated	the	possibility	of	α7	being	exactly	zero.

3.4 | Spatial patterns in site- level effects

For	the	three	best-	represented	species	(PIED,	PIPO	and	PSME),	linear	
regressions	of	each	of	the	site-	level	effects	against	latitude,	longitude	
and	their	interaction	revealed	strong	spatial	patterns	in	baseline	growth,	
the	autoregressive	parameters	and	 the	effects	of	antecedent	climate	
variables	across	the	Southwest	 (Table	1,	Figure	S4).	We	highlight	sig-
nificant	regressions	that	explained	>10%	of	the	spatial	variation	in	the	
site-	level	effects.	Baseline	growth	decreased	from	east	to	west	(PIED:	
R2 = 0.47; PIPO: R2	=	0.29;	PSME:	R2	=	0.19).	For	PIPO,	baseline	growth	
was	also	lower	for	northern	sites,	although	there	was	a	positive	latitude	

(6)G∗

x
= Ax,1 + log (Ax,7RWIs + 1) andRWI

∗

x
= exp (G∗

x
) − 1

(7)ws,v∼Dirichlet(1,1,… ,1)

https://nau.edu/hpc
https://nau.edu/hpc
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by	 longitude	 interaction.	The	magnitude	of	 the	autoregressive	effect	
strength	decreased	towards	the	northeastern	portion	of	the	region	for	
PIPO	(R2	=	0.26)	and	towards	the	east	for	PSME	(R2	=	0.22).	The	effect	
of	Pant	also	decreased	towards	the	northwest	for	PIED	(R2	=	0.17),	and	
the	effect	of	Dant	decreased	towards	the	east	for	PIED	(R2	=	0.12).

3.5 | Antecedent importance weights

For	species	where	the	effects	of	antecedent	climate	were	not	sig-
nificant	 (PIAR,	 PICO	 and	 PCEN),	 the	 antecedent	 weights	 (ws	 in	
Equation	1)	 are	 not	meaningful,	 so	we	 only	 report	 results	 for	 the	
five	 species	 with	 significant	 antecedent	 climate	 responses	 (i.e.	
PIED,	PIFL,	PIPO,	PIST	and	PSME;	see	Figure	4).	Pairwise	correla-
tions	 (Pearson’s	 r)	 of	 the	monthly	weights	 split	 these	 species	 into	

two	groups	characterized	by	similar	weights:	 first,	PIED,	PIPO	and	
PSME	 (r	=	.73–.83)	 and	 second,	 PIST	 and	 PIFL	 (both	white	 pines,	
r	=	.84,	 Figure	S5).	We	 emphasize	 that	 the	 weights	 (ws	 [monthly]	
and Ws	 [annual])	describe	 the	 temporal	pattern	of	 the	antecedent	
effects,	while	the	coefficients	(αs	[site-	level]	and	μαs	[species-	level])	
describe	both	the	strength	(via	the	magnitude	and	significance	level)	
and	direction	(i.e.	the	sign)	of	the	antecedent	effects.	For	example,	
while	all	weights	are	positive	 (irrespective	of	the	climate	variable),	
the	effects	of	temperature	were	negative,	and	so	weights	associated	
with	the	Tant	term	describe	the	temporal	pattern	of	that	(negative)	
response.

Precipitation	 and	 temperature	 importance	 weights	 are	 strongly	
concentrated	in	the	year	of	and	the	year	prior	to	ring	formation.	The	
largest	ws	 for	Pant	occur	 in	 the	current	growing	 season	and	 fall	 and	

F IGURE  3 Posterior	means	(symbols)	and	95%	Bayesian	credible	intervals	(CIs,	grey	whiskers)	for	the	chronology-		(site-	)	level	parameters,	
including:	(a)	RWI

∗

c
	(baseline	growth);	the	effects	of	antecedent	(b)	precipitation	(Pant),	(c)	temperature	(Tant),	and	(d)	drought	(Dant);	the	 

(e)	Pant × Dant	interaction;	and	the	(f)	1st	order	autoregressive	effect.	Within	each	plot,	effects	are	grouped	by	species,	with	species	separated	by	
vertical	dotted	lines	(only	the	three	best	represented	species	are	included	here,	in	order	left	to	right:	Pinus edulis	(PIED),	circles;	Pinus ponderosa 
(PIPO),	triangles;	Pseudotsuga menziesii	(PSME),	squares;	see	Table	S1	for	other	species).	Within	each	species,	effects	are	sorted	by	longitude	of	
the	site,	from	west	(left)	to	east	(right).	Effects	with	CIs	that	do	not	overlap	zero	(signified	by	black,	filled	symbols)	are	considered	significant	at	
p	<	.05	(open	symbols	indicate	non-	significant	effects).	The	Tant×Dant	interaction	term	is	omitted	as	none	were	significant
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TABLE  1 Summary	of	the	linear	regressions	of	chronology-	(site-	)	level	effects	(posterior	means	of	each	parameter)	against	latitude	(Lat),	
longitude	(Lon),	and	their	interaction	(Lat	×	Lon)	for	the	three	best-	represented	species	in	the	dataset	(see	Figure	1	for	description	of	species).	
Climate	covariates	were	centred	around	site-	level	means.	Model	fit	statistics	include	the	adjusted	R2	for	the	overall	model	and	individual	
significance	levels	for	effects:	***p	<	.001,	**p	<	.01,	*p < .05 and †p	<	.1.	The	sign	(+	or	−)	of	each	covariate	(Lat,	Lon,	Lat	×	Lon)	is	indicated	for	
each	regression.	RWI

∗

c
	is	baseline	growth	at	average	climate	conditions

Parameter

PIED PIPO PSME

Lat Lon Lat × Lon R2 Lat Lon Lat×Lon R2 Lat Lon Lat×Lon R2

RWI
∗

c
−*** 0.47 −*** −*** +* 0.29 −*** 0.19

α7	(AR1) −** 0.07 −*** −*** 0.26 −*** 0.22

α2	(P
ant) −*** +** 0.17 −† +* 0.07

α3	(T
ant) −* 0.04 +* 0.04 +† 0.04

α4	(D
ant) −*** 0.12 −* 0.01 −** 0.07

α5	(P
ant	× Dant) +** −* 0.07 +* 0.06

F IGURE   4 Monthly	antecedent	weights	(wt,m,s,v)	and	yearly	weights	(Wt,s,v)	for	each	of	the	three	antecedent	climate	variables	for	five	
species	(rows):	(a)	Pinus edulis	(PIED),	(b)	Pinus ponderosa	(PIPO),	(c)	Pseudotsuga menziesii	(PSME),	(d)	Pinus flexilis	(PIFL)	and	(e)	Pinus 
strobiformis	(PIST).	Columns	correspond	to	the	antecedent	climate	variables,	which	are	separated	by	vertical	black	lines	(from	left	to	right:	
Pant,	Tant and Dant;	see	Figure	1	for	definitions).	Within	each	antecedent	variable	(single	panel),	vertical	grey	lines	separate	years	(left:	year	
of	ring	formation,	right:	4	years	prior	to	ring	formation).	Months	are	indicated	on	the	x-	axes	(from	left:	December	of	year	of	ring	formation,	
right:	January	of	4	years	prior	to	ring	formation).	Black	lines	are	the	posterior	means	of	monthly	weights	(wt,m,s,v),	with	the	grey	shaded	area	
representing	the	95%	Bayesian	credible	intervals	(CIs).	Filled	circles	are	the	posterior	means	of	yearly	weights	(Wt,s,v;	sum	of	monthly	weights	
within	a	given	year-	antecedent	variable)	and	whiskers	are	the	95%	CIs.	Weights	are	constrained	to	sum	to	1	within	each	climate	variable	and	
species.	October–December	of	current	year	weights	(months	1–3)	are	a	priori	set	equal	to	zero
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winter	 preceding	 ring	 formation	 (e.g.	 June	 of	 current	 year	 for	 PIST,	
Figure	4e).	The	largest	ws	for	Tant	occur	during	the	middle	to	late	cur-
rent	growing	season	and	previous	fall	 (e.g.	October	of	previous	year	
for	PIPO,	Figure	4c).	While	large	ws	are	mostly	grouped	into	seasons,	
species	may	also	respond	uniquely	to	conditions	in	individual	months.	
So	while	PIPO	growth	is	driven	by	temperature	conditions	throughout	
late	spring	and	early	summer	in	the	year	of	ring	formation	(Figure	4b),	
PSME	 responds	most	 strongly	 to	July	 temperature	during	 the	 same	
year	(Figure	4c).	Finally,	the	monthly	ws	associated	with	Dant	are	less	
distinguishable	than	those	associated	with	Pant or Tant	(Figure	4,	right-
most	column),	but	indicate	a	tendency	for	conditions	further	into	the	
past	(beyond	last	year)	to	be	important.

Importantly,	 climate	conditions	occurring	2–4	years	prior	 to	 ring	
formation,	 particularly	 for	 Dant,	 also	 drive	 growth.	 For	 both	 PSME	
(Figure	4c)	and	PIPO	(Figure	4b),	PDSI	conditions	experienced	4	years	
prior	to	growth	were	important	predictors	of	growth	(July–September	
for	 PSME	 and	 January-	March	 for	 PIPO).	 Yearly	 weights	 (Ws)	 more	
clearly	show	the	 importance	of	PDSI	4	years	prior	 to	ring	formation	
for	growth	in	PSME	(W	not	significantly	different	from	current	or	prior	
year’s	Ws,	Figure	4c),	as	well	as	the	importance	of	PDSI	2	years	prior	
to	 ring	 formation	 for	PIED	 (highest	W,	 Figure	4a;	p	<	.05).	 Summing	
groups	 of	 yearly	 weights	 (Ws)	 shows	 PDSI	 conditions	 2–4	years	
prior	to	ring	formation	account	for	50%–56%	of	the	Dant	importance	
weights	in	PIPO,	PIED	and	PSME,	while	a	single	year	(the	year	of	ring	
formation)	accounts	for	nearly	half	(43%–49%)	of	the	Pant and Tant im-
portance	weights	(Figure	4a–c).	The	two	white	pines	(PIFL	and	PIST,	
Figure	4d,e)	show	similar	patterns	with	respect	to	Pant	(the	year	of	ring	
formation	accounts	for	43%–46%	of	the	total	Pant	importance	weight)	
and Dant	(2–4	years	prior	to	ring	formation	accounts	for	40%–45%	of	
total	Dant	importance	weight),	but	not	Tant	(the	year	of	ring	formation	
accounts	for	only	25%–26%	of	the	total	Tant	importance	weight).

4  | DISCUSSION

To	improve	understanding	of	the	dependence	of	tree	growth	on	an-
tecedent	climate,	we	applied	the	SAM	framework	(Ogle	et	al.,	2015)	
to	 stand-	level	 tree-	ring	 chronologies	 spanning	100	years	 represent-
ing	eight	conifer	tree	species	at	367	sites	across	the	Southwest.	The	
model	simultaneously	evaluates	the	effects	of	precipitation,	tempera-
ture	 and	drought	 (PDSI)	 during	 and	up	 to	4	years	 prior	 to	 the	 year	
of	 ring	 formation,	 along	with	 the	 relative	 importance	 (“weights”)	 of	
monthly	climate	in	each	antecedent	time	period.	Across	species,	cli-
mate	conditions	experienced	during	the	year	of	and	the	year	prior	to	
ring	 formation	were	 often	 the	most	 important	 (highest	 importance	
weights),	 which	 is	 generally	 consistent	 with	 many	 tree-	ring	 stud-
ies	 that	 evaluate	 correlations	 between	 annual	 ring	 widths	 or	 ring-	
width	 indices	 and	 monthly	 climate	 variables	 (Bond-	Lamberty	 et	al.,	
2014;	Carrer	&	Urbinati,	2006;	Chen,	Welsh,	&	Hamann,	2010;	and	
see	 Appendix	S1).	 Importantly,	 however,	 we	 found	 that	 integrated	
measures	of	drought	occurring	up	to	4	years	prior	to	ring	formation	
are	also	 important	predictors	of	growth	 (i.e.	PDSI	occurring	4	years	
prior	to	growth	accounted	for	c.	15%–30%	of	the	importance	weight	

in P. menziesii,	 P. edulis and P. ponderosa	 [PSME,	 PIED	 and	 PIPO];	
Figure	4a–c).	We	also	document	significant	spatial	variation	in	growth	
parameters	within	species,	with	baseline	growth	rates,	1st	order	auto-
correlation,	and	sensitivity	to	antecedent	climate	varying	along	latitu-
dinal	or	longitudinal	gradients.	We	discuss	potential	mechanisms	and	
implications	of	these	results	for	understanding	physiological	mecha-
nisms	of	climate	legacies	and	for	developing	tree	growth	models	that	
account	for	such	effects.

4.1 | Physiology of tree responses to climate

In	 general,	 parameter	 estimates	 agreed	 well	 with	 climate	 correla-
tions	 from	 the	dendrochronology	 literature,	with	clear	physiological	
interpretations.	 Positive	 correlations	 with	 winter	 precipitation	 re-
ceived	immediately	prior	to	ring	formation	are	often	attributed	to	soil	
moisture	recharge	or	snow	pack	effects,	resulting	in	greater	growing	
season	moisture	availability	(Campelo	et	al.,	2009).	Negative	correla-
tions	between	 ring	width	and	previous	and	current	growing	 season	
temperature	 in	 multiple	 Pinus	 species	 are	 well-	documented	 in	 the	
Southwest,	and	have	been	attributed	to	increased	drought	stress	or	
increased	respiration	rates	(Adams	&	Kolb,	2005).	Positive	effects	of	
PDSI	(higher	PDSI	values	indicate	more	favourable	conditions)	during	
the	previous	winter,	current	growing	season	and	monsoon	period	in-
dicate	a	positive	growth	response	to	high	moisture	availability	during	
these	periods,	due	to	decreased	water	stress	 (Adams	&	Kolb,	2005;	
Copenheaver,	Kyle,	Stevens,	&	Kamp,	2005).

Application	of	the	SAM	framework	also	detected	correlations	with	
less	clear	interpretations,	or	that	do	not	have	much	precedence	in	the	
dendrochronology	 literature,	 such	 as	 positive	 effects	 of	 late	winter	
(P. ponderosa)	 or	 spring	 (P. edulis)	 previous-	year	 PDSI.	 Cool	 and	wet	
conditions	(higher	PDSI)	in	the	early	growing	season	may	lead	to	de-
creased	respiration	during	the	early	growing	season,	when	trees	are	
flushing	 new	 needle	 crops	 (and	 thus	 increased	 assimilation	 by	 the	
previous	year’s	needle	 crops	 (Michelot,	 Simard,	Rathgeber,	Dufrêne,	
&	Damesin,	 2012).	 Similarly,	 negative	Pant by Dant	 interaction	 terms	
indicate	sensitivity	to	precipitation	(Pant)	is	lower	during	periods	char-
acterized	by	high	Dant	(more	favourable,	less	drought-	like	conditions),	
suggesting	a	saturating	effect	of	precipitation	such	that	additional	pre-
cipitation	does	not	 increase	 tree	growth	when	past	conditions	have	
been	cool	and	wet.	Finally,	the	importance	of	climate	at	monthly	time-	
scales	suggests	physiological	responses	to	key	climatic	events:	a	strong	
negative	response	to	July	temperature	in	the	year	of	ring	formation	for	
P. menziesii	likely	results	from	variability	in	the	onset	date	of	the	North	
American	Monsoon	(NAM),	which	“breaks”	the	summer	drought	and	
decreases	summer	temperatures	in	the	Southwest	(Babst	et	al.,	2016).	
Variation	in	this	arrival	date	could	have	severe	implications	for	growth	
in	this	species,	particularly	under	anticipated	increases	in	atmospheric	
moisture	demand	(Szejner	et	al.,	2016).

4.2 | Importance of antecedent climate

Much	of	the	dendrochronology	literature	is	focused	on	ring	width	re-
sponses	to	current	or	recent	climate—in	our	 informal	review	of	200	
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peer-	reviewed	dendrochronology	studies	(Appendix	S1),	less	than	5%	
of	studies	consider	climate	beyond	about	1	year	prior	to	ring	forma-
tion—and	these	2	years	are	the	major	focus	of	most	dendrochronolo-
gists	interested	in	reconstructing	climate	conditions	(Douglass,	1937;	
Fritts,	1966,	1976;	Fritts	&	Swetnam,	1989).	We	also	 find	a	major-
ity	of	the	strongest	correlations	of	ring	width	with	climate	variables	
during	 and	 1	year	 preceding	 the	 year	 of	 ring	 formation	 (Figure	4).	
However,	we	also	provide	strong	evidence	that	P. edulis,	P. ponderosa 
and P. menziesii	 are	 responding	 to	 conditions	 occurring	 3–4	years	
prior	to	ring	formation,	and	that	(in	the	case	of	PDSI)	correlations	with	
antecedent	conditions	more	than	a	year	prior	to	ring	formation	are	of	
similar	or	larger	magnitude	than	those	with	growing	season	conditions	
(Figure	4c).	While	other	studies	have	found	lagged	effects	on	growth	
of	similar	or	longer	length	for	the	effects	of	multiple	years	of	cumu-
lative	precipitation	 (Mazza	&	Manetti,	2013;	Sarris	et	al.,	2007),	 this	
finding	of	correlations	between	ring	width	and	climate	during	discrete	
periods	4	years	in	the	past	for	multiple	species	is	somewhat	novel	(but	
see	Becker,	1989).	Less	distinguishable	and	lower	weights	for	recent	
PDSI	conditions	could	be	due	to	the	 integration	of	previous	climate	
conditions	inherent	in	the	PDSI	calculation	(Dai	et	al.,	2004).	We	note	
that	while	seasonal	correlations	are	consistent	with	other	studies	(e.g.	
negative	correlations	with	summer	temperature,	positive	correlations	
with	 growing	 season	 precipitation),	 quantification	 at	 monthly	 reso-
lution	of	growth–climate	correlations	shows	 that	 there	 is	 important	
month	to	month	variation	within	a	season	across	species	 (Figure	4).	
Furthermore,	most	studies	do	not	investigate	climate	correlations	dur-
ing	the	early	part	 (January–April)	of	the	year	prior	to	ring	formation	
(Carrer	&	Urbinati,	2006;	Chen	et	al.,	2010;	Villalba,	Veblen,	&	Ogden,	
1994),	and	fewer	studies	evaluate	the	lagged	effects	of	PDSI,	yet	we	
found	 high	 correlations	 between	 ring-	width	 indices	 and	 Jan.–Apr.	
PDSI	of	the	year	prior	to	ring	formation	for	at	least	one	widespread	
species	(P. ponderosa).

We	acknowledge	that	there	are	potential	issues	with	applying	the	
SAM	approach	to	chronologies	to	infer	the	time-	scales	and	lags	asso-
ciated	with	antecedent	climate	effects	on	tree	growth,	and	that	lags	
may	actually	be	somewhat	underestimated	here.	First,	the	chronolo-
gies	were	detrended	by	various	methods,	and	it	is	likely	that	stronger	
effects	of	older	climate	would	be	found	in	applications	to	ring-	width	
series	detrended	solely	for	age	effects.	In	particular,	chronologies	cre-
ated	 by	 spline-	type	 detrending	methods	 remove	 variation	 at	 multi-	
year	time-	scales	such	as	that	related	to	competition	in	forest	interiors	
(Cook	&	Peters,	1981),	and	this	may	weaken	correlations	with	older	cli-
mate.	Second,	depending	upon	the	information	of	interest	for	a	given	
chronology,	 removal	 of	 variation	 at	 these	 time-	scales	 may	 obscure	
signals	 from	 stochastic	 events	 such	 as	 extreme	droughts	 (Anderegg	
et	al.,	2015;	Peltier	et	al.,	2016),	release	from	competition	(or	growth	
inhibition)	due	to	insect	outbreaks	or	fire	(Keen,	1937;	Weaver,	1943),	
or	strong	El	Niño	events	(Veblen,	Kitzberger,	&	Donnegan,	2000)	that	
would	result	in	greater	dependence	of	tree-	ring	width	on	events	many	
years	prior	to	ring	formation.	In	support	of	this	expectation,	an	earlier	
application	of	a	SAM	model	to	P. edulis	raw	ring	widths	found	higher	im-
portance	weights	of	less	recent	(e.g.,	3–4	years	prior	to	ring	formation)	
precipitation	and	temperature	variables	(Ogle	et	al.,	2015).	Finally,	we	

also	caution	that	bias	in	site	and	tree	selection	typical	of	dendrochro-
nologies	(Nehrbass-	Ahles	et	al.,	2014)	could	lead	to	monthly	weights	
and	 climatic	 sensitivities	 that	may	not	 accurately	 represent	 all	 trees	
within	 these	 species.	 So-	called	 “complacent”	 trees	 (Douglass,	 1937)	
could	potentially	respond	somewhat	differently	to	climate,	but	we	are	
limited	by	the	data	available	in	the	ITRDB.

4.3 | Mechanisms underlying lags in tree 
chronologies

The	 physiological	 mechanisms	 underlying	 short	 lags	 (1–2	years)	 in	
tree-	ring	 records	 are	 fairly	 well	 studied.	 One	 classical	 explanation,	
particularly	 for	 conifers,	 is	 that	 trees	 retain	 needle	 crops	 for	multi-
ple	years,	and	 thus	poor	or	above	average	needle	production	 in	 re-
sponse	to	climatic	conditions	may	result	in	photosynthetic	deficit	or	
surplus	 for	 a	 number	 of	 subsequent	 years	 (Fritts,	 1976).	 Trees	 can	
also	store	surplus	non-	structural	carbohydrates	(NSCs),	and	draw	on	
these	reserves	for	multiple	years	or	in	times	of	stress	(Chapin,	Schulze,	
&	Mooney,	1990;	Kobe,	1997;	O’Brien,	Leuzinger,	Philipson,	Tay,	&	
Hector,	 2014),	 and	 seasonally	 to	 construct	 new	 tissues	 (Barbaroux	
&	Bréda,	2002).	There	is	widespread	interest	in	the	complexities	un-
derlying	NSC	storage	and	use	(Palacio,	Hoch,	Sala,	Körner,	&	Millard,	
2014),	and	NSC	dynamics	likely	play	a	role	in	the	high	correlation	of	
ring-	width	series	with	previous	growing	season	climate	(Dietze	et	al.,	
2014).

Longer	 lags	 (e.g.	2	 to	4+	years)	are	more	difficult	 to	explain,	but	
may	be	driven	by	one	or	more	of	a	combination	of	physiological	fac-
tors	such	as	(1)	hydraulic	constraints,	(2)	legacy	effects	of	past	needle	
cohorts	or	wood	 features	or	 (3)	NSC	storage	dynamics.	First,	multi-	
year	persistence	of	hydraulic	limitations	(unrepaired	embolism)	leading	
to	decreased	growth	has	been	suggested	as	a	mechanism	underlying	
legacy	effects	of	drought	in	conifers	in	the	Southwest	(Anderegg	et	al.,	
2015;	Peltier	et	al.,	2016).	Similar	effects	could	arise	due	to	sapwood	
depth	reduction	caused	by	water	stress	(Cermak	&	Nadezhdina,	1998;	
Phillips,	Oren,	&	Zimmermann,	1996).	While	the	magnitude	of	older	
weights	was	usually	small	relative	to	weights	defining	the	importance	
of	more	 recent	 climate	 conditions	 (Figure	4),	 the	 frequency	 of	 high	
drought	stress	is	likely	to	increase	in	this	region	(Seager	et	al.,	2007),	
potentially	 increasing	 the	 importance	 of	 drought	 legacy	 effects	 on	
tree	 growth	 and	 forest	 productivity	 (Schwalm	 et	al.,	 2017).	 Second,	
each	of	the	conifer	species	studied	here	can	retain	needles	for	at	least	
two,	or	as	many	as	7	years	(Little,	1980).	Poor	needle	crops	in	a	given	
year	could	thus	effect	growth	rates	for	many	subsequent	years.	Third,	
the	 long	 lags	 present	 in	 PDSI	 effects	 for	 P. edulis,	 P. ponderosa and 
P. menziesii	and	in	temperature	effects	for	P. edulis	could	also	indicate	
long-	term	differences	in	NSC	storage	between	trees	or	sites.	This	may	
be	due	 to	use	of	multiple	NSC	pools	of	differing	ages	and	 turnover	
times	(Carbone	et	al.,	2013;	Muhr	et	al.,	2016;	Richardson	et	al.,	2015;	
Trumbore,	Czimczik,	Sierra,	Muhr,	&	Xu,	2015),	or	trees	entering	dif-
ferent	“states”	associated	with	either	favourable	or	poor	growing	con-
ditions	(Ogle	&	Pacala,	2009).	Experimental	work,	however,	is	required	
to	identify	the	actual	mechanisms	underlying	predicted	lagged	effects	
of	climate	on	tree	growth.
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4.4 | Spatial variation in climatic 
sensitivities and NAM

Variations	in	the	sensitivities	of	ring-	width	indices	to	antecedent	cli-
mate	variables	across	the	Southwest	suggest	important	differences	in	
tree	physiology	within	a	species’	range	associated	with	climate	regime,	
elevation	 and/or	 genetic	 variation	 (Table	1).	 Latitudinal	 variations	
in	 tree-	ring	 growth	 sensitivities	 are	well-	documented,	 as	 trees	 shift	
from	precipitation	to	temperature	limitation	with	increases	in	latitude	
and/or	elevation	(Douglass,	1937).	Different	P. ponderosa	subspecies	
occupy	the	north	and	south	of	the	Southwest	region	(Willyard	et	al.,	
2017),	which	may	underlie	lower	baseline	growth	(RWI

∗

c
)	and	autore-

gressive	terms	for	this	species	at	higher	latitudes	(Table	1).	Differential	
moisture	use	and	summer	precipitation	variability	along	the	latitudinal	
gradient	of	 relative	precipitation	contribution	of	 the	NAM	may	also	
drive	these	responses	(Szejner	et	al.,	2016).

Climatic	 differences,	 such	 as	 the	 relative	 contribution	 of	 Pacific	
winter	storms	vs.	the	NAM	to	annual	precipitation,	may	also	underlie	
east	 to	west	variation	 in	baseline	growth	 rates,	autocorrelation,	and	
PDSI	sensitivity	in	P. edulis,	P. ponderosa and P. menziesii	(Table	1).	Sites	
farther	 west	 generally	 experience	 the	 bimodal	 precipitation	 regime	
characteristic	of	Arizona—relatively	equal	precipitation	 inputs	during	
winter	 and	 the	 summer	monsoon	with	 a	 pronounced	 dry	 period	 in	
March-	June—whereas	sites	further	east	receive	a	smaller	proportion	
of	precipitation	during	the	winter	(Douglas,	Maddox,	Howard,	&	Reyes,	
1993;	Griffin	et	al.,	2013;	Higgins,	Yao,	&	Wang,	1997;	Szejner	et	al.,	
2016).	Tree	rings	in	the	Southwest	can	be	highly	sensitive	to	the	tim-
ing,	duration	and	magnitude	of	monsoonal	precipitation.	For	example,	
sub-	annual	characteristics	of	tree	rings	from	trees	in	the	Southwest,	
such	as	occurrence	and	 location	of	 false	 latewood	bands,	are	highly	
sensitive	to	onset	date	and	strength	of	the	NAM,	and	these	sensitivi-
ties	differ	between	sites	(Babst	et	al.,	2016).	North	American	Monsoon	
characteristics	are	also	strong	drivers	of	latewood	δ13C—an	integrated	
physiological	measure	of	water-	use	efficiency—in	this	region	(Leavitt,	
Wright,	&	Long,	2002).	For	example,	monsoon	arrival	“rescues”	trees	
from	mid-	summer	drought;	 in	more	 arid	western	 sites	higher	 sensi-
tivity	to	positive	PDSI	and	a	more	negative	sensitivity	to	temperature	
(P. edulis)	may	be	due	to	more	variable	monsoon	arrival	and	intensity	
(Figure	3).	As	winter	and	early	spring	precipitation	are	the	most	con-
sistently	important	drivers	of	ring	widths	in	P. ponderosa,	P. edulis and 
P. menziesii,	we	find	 lower	average	growth	rates	 in	the	more	eastern	
sites	(Figure	3;	Fritts	et	al.,	1965).	Highly	variable	NAM	onset	date	may	
also	underlie	weaker	autoregressive	effects	and	lower	baseline	growth	
in	eastern	sites,	which	derive	 less	of	 their	annual	precipitation	 from	
winter	 storms	 (see	above;	Table	1).	However,	 this	could	also	be	due	
to	greater	dependence	on	stored	NSCs	for	growth	in	more	arid	sites,	
reflecting	a	link	between	stress	and	physiological	strategy	at	the	popu-
lation	or	genotype	level	(Chen	et	al.,	2010;	Grady	et	al.,	2013).

5  | CONCLUSIONS AND FUTURE WORK

Our	 application	 of	 the	 SAM	 framework	 demonstrates	 the	 impor-
tance	 of	 considering	 antecedent	 climate,	 even	 in	 detrended	 annual	

ring-	width	series,	and	how	growth	in	closely	related	species	can	de-
pend	 to	 varying	 degrees	 on	 different	 antecedent	 climate	 variables.	
We	argue	that	the	SAM	approach	represents	a	rigorous	method	for	
selecting	antecedent	climate	variables	for	use	in	tree–growth–climate	
modelling	applications,	because	 it	allows	data	and	models	to	 inform	
the	selection	process.	In	the	future,	we	hope	to	explicitly	include	spa-
tial	effects	(e.g.	elevation,	latitude,	etc.)	into	the	SAM	model	to	under-
stand	how,	in	addition	to	sensitivities	to	various	climate	variables,	the	
antecedent	weights	themselves	vary	through	time	and	space.	While	
we	would	like	to	incorporate	more	species	to	understand	how	the	ef-
fects	of	antecedent	climate	differ	across	 less	related	groups	of	spe-
cies	(e.g.	angiosperms	vs.	gymnosperms).	Sample	size	for	other	species	
was	insufficient,	highlighting	the	need	for	better	replication	of	uncon-
ventional	dendrochronology	 species	 if	data	 synthesis	 studies	 are	 to	
be	representative	of	the	range	of	growth	and	physiological	strategies	
in	North	America.	Moreover,	results	from	our	application	of	the	SAM	
model	provide	evidence	that	regional	climate	may	drive	differences	in	
climatic	sensitivities	within	a	species’	range,	suggesting	regional	veg-
etation	models	should	account	for	variation	across	populations,	par-
ticularly	in	the	context	of	climate	change,	where	different	populations	
may	differentially	respond	to	such	changes	(Chen	et	al.,	2010).
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