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Abstract

Despite	 widespread	 interest	 in	 drought	 legacies—multiyear	 impacts	 of	 drought	 on	
tree	growth—the	key	implication	of	reported	drought	legacies	remains	unaddressed:	
as	impaired	growth	and	slow	recovery	associated	with	drought	legacies	are	pervasive	
across	 forest	ecosystems,	what	 is	 the	 impact	of	more	 frequent	drought	conditions?	
We	investigated	the	assumption	that	either	multiple	drought	years	occurring	during	
a	short	period	(multiyear	droughts),	or	droughts	occurring	during	the	recovery	period	
from	previous	drought	(compounded	droughts),	are	detrimental	to	subsequent	growth.	
There	is	evidence	that	drought	responses	may	vary	among	populations	of	widespread	
species,	leading	us	to	examine	regional	differences	in	responses	of	the	conifer	Pinus 
ponderosa	to	historic	drought	frequency	in	the	western	United	States.	More	frequent	
drought	conditions	incurred	additional	growth	declines	and	shifts	 in	growth–climate	
sensitivities	in	the	years	following	drought	relative	to	single‐drought	events,	with	‘tri‐
ple‐droughts’	 being	worse	 than	 ‘double‐droughts’.	 Notably,	 prediction	 skill	 was	 not	
strongly	 reduced	when	 ignoring	compounded	droughts,	a	consequence	of	 the	 tem‐
porally	comprehensive	formulation	of	our	stochastic	antecedent	model	that	accounts	
for	the	climatic	memory	of	tree	growth.	We	argue	that	incorporating	drought‐induced	
temporal	variability	in	tree	growth	sensitivities	can	aid	inference	gained	from	statistical	
models,	where	more	simplistic	models	could	overestimate	the	severity	of	drought	lega‐
cies.	We	also	found	regional	differences	in	response	to	repeated	drought,	and	suggest	
plastic	post‐drought	sensitivities	and	climatic	memory	may	represent	beneficial	physi‐
ological	adjustments	 in	 interior	regions.	Within‐species	variability	may	thus	mediate	
forest	responses	to	increasing	drought	frequency	under	future	climate	change,	but	ex‐
perimental	approaches	using	more	species	are	necessary	to	improve	our	understand‐
ing	of	the	mechanisms	that	underlie	drought	legacy	effects	on	tree	growth.
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1  | INTRODUC TION

Forests	 are	 key	 drivers	 of	 the	 terrestrial	 carbon	 cycle	 (Bonan,	
2008),	 and	 dynamics	 in	 forest	 carbon	 uptake	 likely	 account	 for	
a	 large	majority	 of	 the	 terrestrial	 carbon	 sink	 (Pan	 et	 al.,	 2011).	

The	 responses	 of	 forests	 to	 future	 climatic	 extremes,	 particu‐
larly	 drought	 and	 drought‐related	 impacts	 associated	 with	 cli‐
mate	 change	 (Marvel	 et	 al.,	 2019),	 will	 likely	 strongly	 influence	
the	future	states	of	forest	carbon	storage	and	fluxes	(Reichstein	
et	 al.,	 2013).	 Particularly	 in	 the	 western	 United	 States,	 despite	
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uncertainties	 in	 precipitation	 projections,	 drought	 frequency	 is	
expected	 to	 increase	 due	 to	 increases	 in	 atmospheric	 moisture	
demand	with	rising	temperatures	 (Seager	et	al.,	2007).	Warming	
temperatures	 will	 also	 lead	 to	 a	 greater	 likelihood	 of	 so‐called	
‘global‐change	 type	 droughts’	 (Overpeck,	 2013).	 Mechanistic	
understanding	 of	 tree	 responses	 to	 drought	 via	 indirect	 and	 di‐
rect	mechanisms—such	as	pest	outbreaks,	hydraulic	dysfunction,	
carbon	 starvation,	 and	 phloem	 transport	 limitation	 (Anderegg,	
Hicke,	 et	 al.,	 2015;	McDowell	 et	 al.,	 2016;	 Sevanto,	McDowell,	
Dickman,	Pangle,	&	Pockman,	2014;	Wiley,	Rogers,	Hodgkinson,	
&	 Landhäusser,	 2016)—has	 greatly	 improved.	 Yet,	 there	 are	 still	
fundamental	uncertainties,	particularly	at	regional	scales,	in	how	
species	or	population	responses	to	climatic	stress	may	 influence	
variability	in	forest	growth,	with	evidence	for	significant	variation	
in	drought	responses	among	tree	populations	(Bradley	St	Clair	&	
Howe,	2007;	Chen,	Welsh,	&	Hamann,	2010;	Young	et	al.,	2017).

In	particular,	 legacy	effects	of	drought—multiyear	 recoveries	
of	 trees	 from	 drought,	 due	 to	 induced	 shifts	 in	 growth–climate	
sensitivities—have	 the	 potential	 to	 decrease	 the	 predictability	
of	 forest	 carbon	 fluxes	 worldwide	 (Anderegg,	 Schwalm,	 et	 al.,	
2015;	 Kolus	 et	 al.,	 2019;	 Peltier,	 Fell,	 &	 Ogle,	 2016;	 Schwalm	
et	 al.,	 2017).	 This	 has	 spurred	 a	 growing	 body	 of	 research	 that	
aims	to	characterize	drought	legacies	across	the	globe	(Gao	et	al.,	
2018;	 Huang,	 Wang,	 Keenan,	 &	 Piao,	 2018;	 Jiang	 et	 al.,	 2019;	
Kannenberg	et	al.,	2018;	O’Brien,	Ong,	&	Reynolds,	2017;	Serra‐
Maluquer,	Mencuccini,	&	Martínez‐Vilalta,	2018;	Wu	et	al.,	2018;	
Yin	 &	 Bauerle,	 2017).	 Mechanisms	 underlying	 drought	 legacies	
include	 decreases	 in	 active	 xylem	 area,	 loss	 of	 root	 function,	
deep	soil	moisture	depletion,	needle	shedding	or	canopy	loss,	and	
changes	in	the	amounts	or	availability	of	stored	nonstructural	car‐
bohydrates	(NSC),	among	others	(Adams	et	al.,	2017;	Barbaroux	&	
Bréda,	2002;	Brodersen	&	McElrone,	2013;	Fritts,	1976;	Galiano,	
Martínez‐Vilalta,	 &	 Lloret,	 2011;	 Hagedorn	 et	 al.,	 2016;	 Rempe	
&	Dietrich,	2018;	Resco	et	 al.,	 2009;	Sala,	Piper,	&	Hoch,	2010;	
Sevanto	et	al.,	2014).

Regardless	 of	 the	 ultimate	mechanism(s),	 legacies	 in	 observed	
growth	 result	 from	 detectable	 changes	 in	 the	 sensitivity	 of	 tree	
growth	to	climate	(e.g.,	precipitation	and/or	temperature),	and	there	
is	evidence	that	growth–climate	plasticity	 in	certain	populations	 is	
common.	For	example,	conifer	species	 in	the	southwestern	United	
States	 rely	 more	 heavily	 on	 monsoonal	 precipitation	 in	 response	
to	periodic	climate	variation	associated	with	 the	El	Niño	Southern	
Oscillation	 (Peltier	 &	 Ogle,	 2019).	 Thus,	 the	 assumption	 of	 many	
terrestrial	 ecosystem	models	 that	 recovery	 is	both	 immediate	and	
complete	(or	that	growth–climate	sensitivities	are	constant	through	
time)	is	probably	invalid,	at	least	at	large	scales	(Kolus	et	al.,	2019).	
Furthermore,	induced	changes	in	growth–climate	sensitivities	have	
been	 shown	 to	 vary	 across	 space	 within	 conifer	 species	 such	 as	
Pinus ponderosa,	 suggesting	 the	 need	 to	 consider	 variation	 among	
populations	 (Anderegg,	 Schwalm,	 et	 al.,	 2015;	McCullough,	Davis,	
&	Williams,	2017;	Peltier	&	Ogle,	2019).	While	tree	rings	cannot	be	
used	 to	 estimate	 carbon	 fluxes	 directly	 due	 to	 both	 historic	 sam‐
pling	design	of	available	datasets	focusing	on	climate	sensitive	trees	

(Klesse	et	al.,	2018;	Nehrbass‐Ahles	et	al.,	2014)	and	the	complexity	
of	terrestrial	net	ecosystem	exchange	(Babst	et	al.,	2014),	they	can	
provide	 directional	 information	 on	 the	major	 drivers	 of	 forest	 net	
primary	productivity	(Babst	et	al.,	2019),	with	strong	implications	for	
overall	fluxes.

One	of	the	major	uncertainties	revealed	by	recent	tree	ring	and	
eddy	flux	tower	syntheses	is	the	effect	that	more	frequent	drought	
conditions	 occurring	 over	 relatively	 short	 timespans	may	 have	 on	
tree	growth.	Compounded	disturbances	may	have	unexpected	 re‐
sults	at	the	ecosystem	scale	 (Paine,	Tegner,	&	Johnson,	1998),	and	
impacts	 are	 often	 negative	 for	 impacted	 ecological	 communities	
(Hughes	et	al.,	2019).	Droughts	are	extreme	climate	events,	and	as	
such	 are	 intrinsically	 rare,	with	 compounded	 droughts	 being	 even	
rarer.	Yet,	under	a	warming	climate,	more	frequent	droughts	are	ex‐
pected.	That	 is,	 it	 is	 increasingly	 likely	that	droughts	will	occur	for	
multiple	 consecutive	years	or,	 similarly,	droughts	will	 occur	during	
the	 period	 from	which	 an	 ecosystem	or	 tree	 is	 recovering	 from	 a	
previous	drought	(Williams	et	al.,	2013),	with	unknown	(but	presum‐
ably	detrimental)	impacts	on	tree	growth	(Anderegg,	Schwalm,	et	al.,	
2015;	Schwalm	et	al.,	2017).	In	the	western	United	States,	forested	
ecosystems	are	now	subject	to	unusually	severe	drought	conditions,	
which	 can	 persist	 for	multiple	 years	 (Griffin	 &	 Anchukaitis,	 2014)	
and	are	likely	to	continue	to	become	more	common	(Williams	et	al.,	
2013).	More	 frequent	 drought	 conditions	will	 likely	 increase	mor‐
tality	risk	 (Allen,	Breshears,	&	McDowell,	2015;	Allen	et	al.,	2010),	
but	what	about	the	physiological	 impacts	on	surviving	 individuals?	
Findings	of	cavitation	fatigue	in	certain	angiosperms	suggest	trees	
still	 recovering	 from	 drought	 may	 experience	 increased	 levels	 of	
cavitation	during	a	second	drought	(Sperry,	Perry,	&	Sullivan,	1991),	
although	it	 is	unclear	 if	this	dynamic	applies	in	gymnosperms.	Low	
NSC	concentrations	following	drought	may	limit	trees’	capacity	for	
osmotic	 adjustment,	 a	 component	 of	 drought	 tolerance	 (Bartlett,	
Scoffoni,	&	 Sack,	 2012;	Mencuccini,	Hölttä,	 Sevanto,	&	Nikinmaa,	
2013).	Additional	drought	stress	may	also	push	NSC	reserves	closer	
to	posited	‘critical’	levels,	further	slowing	recovery,	limiting	replen‐
ishment	of	functional	xylem	conducting	area	(Trugman	et	al.,	2018),	
and	increasing	subsequent	vulnerability	to	insect	pests	(Wiley	et	al.,	
2016).	 In	short,	the	effect	of	repeated	and/or	 longer	droughts	and	
shortening	mean	drought	return	intervals	on	growth	in	the	coming	
years	represents	a	major	uncertainty	in	predictions	of	tree	growth,	
forest	productivity,	and	carbon	cycling.

To	quantify	 the	 legacies	of	more	 frequent	drought	 conditions,	
as	well	 as	 the	 variation	 in	 legacy	 effects	 across	 a	 species’	 range,	
we	applied	a	stochastic	antecedent	model	(SAM;	Ogle	et	al.,	2015;	
Peltier,	Barber,	&	Ogle,	2018)	to	all	available	P. ponderosa	 (ponder‐
osa)	ring	widths	in	the	contiguous	United	States,	obtained	from	the	
International	Tree	Ring	Data	Bank	(ITRDB).	The	SAM	framework	is	
a	statistical	approach	to	describing	the	temporal	complexity	of	tree	
growth	responses	to	climate	variability.	In	particular,	the	approach	
quantifies	how	past	climate	conditions	continue	to	impact	observed	
tree	 growth	 for	 multiple	 months	 or	 years	 after	 those	 conditions	
have	passed	(Peltier	et	al.,	2018).	As	multiyear	droughts	and	com‐
pounded	 droughts	 are	 uncommon	 extremes,	 the	 long‐time	 series	



     |  3PELTIER and OGLE

nature	 of	 the	 ITRDB	 tree‐ring	 records	 represents	 a	 valuable	 data	
source	 from	which	 to	 learn	about	 impacts	of	 such	drought	condi‐
tions	on	 tree	growth.	For	 simplicity	 and	brevity,	we	 subsequently	
refer	to	both	multiyear	droughts	and	the	case	of	multiple	drought	
events	occurring	in	a	short	period	(say,	separated	by	a	wet	year)	as	
compounded	 drought,	 noting	 the	 difference	 is	 somewhat	 seman‐
tic,	as	both	entail	drought	conditions	occurring	during	the	potential	
recovery	period	from	a	previous	drought	year.	By	selecting	severe	
drought	years	in	the	last	century	and	categorizing	years	in	the	record	
according	to	the	number	of	drought	years	that	have	occurred	during	
the	past	4	years,	we	asked:	(a)	Compared	to	single	droughts,	what	
is	the	impact	of	compounded	drought	on	tree	growth,	as	expressed	
in	tree‐ring	widths?	(b)	Compared	to	single	droughts,	are	there	ad‐
ditional	legacy	effects	on	climatic	sensitivities	of	growth	when	two	
or	 three	 drought	 years	 have	 occurred	 in	 the	 last	 5	 years?	 Finally,	
(c)	how	does	ignoring	the	impacts	of	compounded	drought	(on	ring	
width	and	climate	sensitivity)	effect	ring	width	(growth)	predictions	
across	the	range	of	a	widespread	tree	species	in	the	western	United	
States?	Improved	understanding	of	the	impacts	of	repeated	drought	
in	short	time	periods,	and	how	this	may	differ	across	space	within	a	
species	could	contribute	to	improved	predictions	of	terrestrial	car‐
bon	 fluxes	 in	 the	western	United	States	under	 continuing	 climate	
change	(Kolus	et	al.,	2019).

2  | MATERIAL S AND METHODS

2.1 | Data sources

All	available	ring‐width	data	for	P. ponderosa	Dougl.	Ex.	Laws.	from	
the	 ITRDB	 in	 the	 United	 States	 were	 downloaded	 in	 early	 2016	
(N ≅	 517,149	 individual	 rings)	 for	 this	 analysis.	Observations	 prior	
to	1898	were	 retained	 for	use	 in	detrending	 (see	Section	2.2)	but	
were	discarded	prior	to	analysis	due	to	the	lack	of	contemporaneous	
climate	data.	 For	 each	of	 the	219	 ITRDB	 sites,	monthly	 precipita‐
tion	 and	mean	 temperature	 (4	 km	 resolution)	were	obtained	 from	
the	PRISM	Climate	Group	at	Oregon	State	University	(http://prism.
orego	nstate.edu,	2017)	via	the	‘prism’	package	(Hart	&	Bell,	2017),	
matched	 by	 location	 in	 R	 (R	 Core	 Team,	 2019).	We	 also	 obtained	
self‐calibrating	Palmer	Drought	Severity	Index	(PDSI)	from	the	West	
Wide	Drought	Tracker	 (Abatzoglou,	McEvoy,	&	Redmond,	2017),	a	
product	derived	from	PRISM	precipitation	and	temperature	data	at	
the	same	spatial	resolution.	This	product	has	been	successfully	used	
in	other	tree‐ring	modeling	applications	(Peltier	&	Ogle,	2019).	We	
use	PDSI	as	a	covariate	in	our	model(s)	for	ring	widths,	and	as	PDSI	
is	 derived	 from	 the	 PRISM	 data,	 it	 is	 equivalent	 to	 an	 interaction	
between	precipitation	and	 (negative)	temperature	 (see	Section	2.4	
for	additional	details	and	Peltier	&	Ogle,	2019).	 Independently	de‐
rived	PDSI	data	at	coarser	spatial	resolution	(Dai,	Trenberth,	&	Qian,	
2004)	have	previously	been	used	to	successfully	model	P. ponderosa 

ring	widths	in	the	southwestern	United	States	(Peltier	et	al.,	2018).	
We	note	inference	regarding	mortality	risk	in	not	possible	with	the	
ITRDB	dataset	given	that	 individual	trees	survived	the	droughts	 in	
the	record.

2.2 | Detrending and chronology construction

To	account	for	(or	‘remove’)	size	and	age	trends	in	tree	growth,	and	
because	it	was	computationally	infeasible	to	directly	use	ring‐level	
data	in	the	model,	we	detrended	for	age	prior	to	the	analysis.	We	
fit	an	age	model	(modified	negative	exponential	or	flat	line)	to	each	
core	via	the	R	package	dplR	(Bunn,	2008),	divided	each	ring	width	
by	the	fitted	function	to	produce	an	index,	and	averaged	the	index	
across	rings	within	sites	to	produce	site‐level	chronologies.	All	other	
trends	are	considered	‘ecological’,	or	at	least,	unrelated	to	age.	This	
is	standard	practice	in	dendrochronology	(Fritts	&	Swetnam,	1989),	
and	we	have	successfully	used	this	approach	before	(Peltier	&	Ogle,	
2019).	This	resulted	in	221	site‐level	chronologies	and	19,272	ring‐
width	indices	(‘RWI’).	Chronologies	were	classified	into	three	regions	
(Figure	1)	corresponding	to	the	geographic	distribution	of	groups	of	
P. ponderosa	 subspecies	 (Callaham,	2013;	Little,	1971;	Willyard	et	
al.,	2017),	approximately	corresponding	to	the	Southwest	(Arizona	
and	New	Mexico;	‘SW’;	ssp.	brachyptera	and	perhaps	ssp.	arizonica),	
Intermountain	West	(Utah,	Colorado,	Wyoming,	Montana,	Eastern	
Idaho,	Dakotas;	 ‘IM’;	 ssp.	 scopulorum),	 and	 the	 Pacific	Northwest	
and	West	Coast	(northern	California,	Oregon,	Washington,	western	
Idaho;	‘NW’;	ssp.	ponderosa and ssp. benthamiana).	The	SW	and	IM	
regions	fall	within	what	is	often	referred	to	as	the	‘interior’	variety	
of	P. ponderosa,	while	the	NW	region	falls	within	the	‘western’	vari‐
ety	(Norris,	Jackson,	&	Betancourt,	2006).

2.3 | Drought selection

For	each	site,	we	defined	hydrologic	years	(October–September)	hav‐
ing	less	than	5th	percentile	site‐level	mean	annual	PDSI	as	droughts.	

F I G U R E  1  Site	locations	(jittered)	of	all	chronologies	used	in	
this	study.	Chronologies	from	the	Southwest	(SW,	black	circles),	
Intermountain	West	(IM,	dark	gray	squares),	and	Pacific	Northwest	
and	West	Coast	(NW,	light	gray	triangles)	regions	are	overlaid	
on	mean	annual	precipitation	(mm,	obtained	from	PRISM).	For	
more	information	about	regional	delineations	of	chronologies,	see	
Section	2.2

http://prism.oregonstate.edu
http://prism.oregonstate.edu
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While	we	could	have	defined	droughts	as	years	with	PDSI	 less	than	
some	threshold	(e.g.,	−2),	our	approach	avoids	relying	on	regional	scal‐
ing	to	characterize	site‐level	extremes,	because	unusually	dry	condi‐
tions	are	estimated	based	on	the	historic	PDSI	conditions	at	each	site.	
For	 each	year	 in	 the	 record,	we	 then	 tallied	 the	number	of	drought	
events	occurring	 in	 the	4	years	previous	 to	and	 including	 the	water	
year	of	 interest	 (window	of	5	years).	There	were	5,420	site‐years	 in	
the	record	with	a	single	drought	during	the	5‐year	window,	1,873	with	
two	(‘double‐droughts’),	and	883	with	three	(‘triple‐droughts’).	This	in‐
formation	 is	presented	graphically	 in	black	shading	beneath	each	of	
Figure	4a–c.	To	evaluate	consistency	with	a	previous	study	(Anderegg,	
Schwalm,	et	al.,	2015),	we	also	estimated	the	response	of	P. ponderosa 

RWI	to	July	PDSI	(best	single	predictor	according	to	R2)	with	a	classical	
linear	regression	and	calculated	the	average	legacy	effect	(observed‐
predicted	RWI)	for	the	4	years	following	each	drought	(hereafter,	the	
‘single‐predictor	model’).

2.4 | Model description

To	 investigate	 the	 potential	 impacts	 of	 compounded	 drought	 and	
changes	 in	 growth–climate	 sensitivities	 due	 to	 associated	drought	
legacies,	we	constructed	a	novel	model	based	upon	the	SAM	frame‐
work	(Ogle	et	al.,	2015).	This	framework	has	been	applied	to	a	num‐
ber	 of	 problems	 (Dal	 Bello,	 Rindi,	 &	 Benedetti‐Cecchi,	 2017;	Guo	
&	Ogle,	2019;	Ogle	et	al.,	2015;	Ryan	et	al.,	2017,	2015),	 including	
applications	to	tree‐ring	chronologies	(Peltier	et	al.,	2018;	Peltier	&	
Ogle,	2019).	For	a	detailed	description	of	the	SAM	model	as	applied	
to	tree‐ring	data,	see	Peltier	et	al.	 (2018).	The	model	 implemented	
here	is	akin	to	a	linear	regression	of	tree‐ring	widths	on	climate	vari‐
ables.	The	climate	variables	are	weighted	averages	of	past,	monthly	
climate	values	over	a	5‐year	period,	except	the	weights	themselves	
are	treated	as	unknown	parameters.	We	then	allow	for	different	in‐
tercepts,	climate	effects,	and	weights	for	non‐drought	and	drought	
years,	enabling	us	to	compare	ring	width	responses	to	climate	when	
different	numbers	of	drought	years	have	occurred	during	the	pre‐
ceding	four	years.

In	 summary,	we	 assume	 that	 RWI	 for	 each	 site	 or	 chronology	
(c)	 and	 for	 each	 year	 (y)	 is	 normally	 distributed	 around	 a	mean	or	
predicted	 RWI,	 μy,c,	 which	 we	 subsequently	 model	 via	 the	 SAM	
approach.	 Thus,	we	define	d(y)	 as	 the	number	of	 droughts	 (d = 0, 

1,	2,	or	3)	occurring	 in	the	4	years	preceding	and	 including	year	y, 

which	 spans	 the	 2–5	 year	 average	 recovery	 time	 found	 for	 coni‐
fers	(Anderegg,	Schwalm,	et	al.,	2015;	Peltier	et	al.,	2016).	We	then	
model μy,c	as	a	function	of	(centered)	antecedent	climate	variables,	
and	we	allow	the	coefficients	 (effects)	 to	vary	among	sites,	c, and 

past	drought	status,	d:

Effects	include	the	intercept	and	an	autoregressive	term	for	prior	
year	 RWI	 (RWIy−1,c)	 (α	 terms),	 and	 climate	 effects	 (β	 terms)	 that	

describe	the	sensitivities	of	RWI	to	antecedent	climate	covariates,	
including	 precipitation	 (Pant),	 temperature	 (Tant),	 and	 PDSI	 (Dant),	
and	 the	 two	 one‐way	 interactions	 of	 Pant × Dant and Tant × Dant. 
Recall	 the	PDSI	data	product	used	here	 (Abatzoglou	et	al.,	2017)	
is	 somewhat	 equivalent	 to	 an	 interaction	 between	 precipitation	
and	(negative)	temperature;	hence,	we	do	not	explicitly	 include	a	
Pant × Tant	 interaction.	During	 initial	model	development,	we	also	
found	that	incorporation	of	a	Dant	effect	led	to	better	MCMC	be‐
havior,	including	improved	convergence	of	the	MCMC	chains	(see	
Section	2.4.2,	below),	relative	to	models	that	included	a	Pant × Tant 
interaction.	We	suggest	this	could	arise	because	PDSI	is	inherently	
lagged,	and	this	helps	prevent	identifiability	issues	among	anteced‐
ent	 importance	 weights	 (described	 below)	 for	 precipitation	 and	
temperature.	We	also	note	that	incorporation	of	the	Pant × Dant and 

Tant × Dant	interactions	allows	evaluation	of	nonlinearity	in	the	re‐
sponses	of	tree‐ring	widths	to	precipitation	and	temperature	(e.g.,	
saturating	effects),	though	in	past	applications,	these	effects	have	
been	small	(Peltier	et	al.,	2018;	Peltier	&	Ogle,	2019).

Here,	the	SAM	approach	defines	each	antecedent	climate	vari‐
able	(Pant, Tant, and Dant)	as	a	weighted	average	of	their	correspond‐
ing	current	and	past	monthly	values,	over	a	period	of	60	months.	
Let	Xy−t.m	represent	the	climate	value	at	month	m	(m	=	1,	2,	…,	12	for	
January,	February,	…,	December)	and	t	years	 into	the	past	(t = 0, 

1,	…,	4	for	current	year,	previous	year,	…,	4	years	prior)	relative	to	
year y.	The	antecedent	importance	weights,	wt,m,dr,	are	parameters	
to	be	estimated,	where	dr	denotes	whether	or	not	a	drought	has	
occurred	 in	 the	past	4	years	 (dr	=	0	or	1).	That	 is,	we	estimate	a	
unique	set	of	 ‘normal	year’	weights	and	a	second	set	of	 ‘drought	
year’	weights	for	all	types	of	drought	(rather	than	a	unique	set	of	
weights	for	each	of	d	=	1,	2,	and	3).	These	weights	are	assumed	to	
be	the	same	across	all	sites	within	a	region	(SW,	IM,	or	NW),	but	
vary	by	region.	Thus,	for	X = P, T, or D,	an	antecedent	climate	vari‐
able, Xant

y,c
,	is	calculated	as:

The	wt,m,dr	 are	 constrained	 to	 sum	 to	 1	 across	 all	 t and m	 for	 a	
given dr,	so	they	are	interpreted	as	the	relative	importance	of	cli‐
mate	during	a	given	month	for	a	given	climate	covariate	(P, T, or D; 

see	Section	2.4.1).	As	in	Peltier	et	al.	(2018),	the	resolution	of	the	
weights	declines	with	time	into	‐	the	past;	that	 is,	while	we	esti‐
mate	24	unique	weights	for	the	most	recent	2	years	(24	months),	
we	estimate	only	six	unique	weights	for	2	years	prior	to	ring	forma‐
tion	(i.e.,	January	and	February	weights	are	equal,	etc.),	and	four	
unique	weights	in	each	of	the	third	and	fourth	years	prior	to	ring	
formation	 (i.e.,	 January,	 February,	 and	March	weights	 are	 equal,	
etc.;	Peltier	et	al.,	2018).	We	also	assume	October,	November,	and	
December	weights	in	the	year	of	ring	formation	are	equal	to	zero	
as	this	 is	after	 the	conclusion	of	 the	growing	season,	and	hence,	
climate	conditions	during	this	period	are	assumed	to	have	no	ef‐
fect	on	growth	during	the	corresponding	year.

(1)!y,c="c,1+"c,2RWIy−1,c+#c,d(y),1P
ant
y,c

+#c,d(y),2T
ant
y,c

+#c,d(y),3D
ant
y,c

+#c,d(y),4P
ant
y,c

Dant
y,c

+#c,d(y),5T
ant
y,c

Dant
y,c

.

(2)Xant
y,c

=

4
∑

t=0

12
∑

m=1

wt,m,dr ⋅Xy−t,m,c.
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We	also	quantify	the	length	of	climatic	memory	as	either	the	num‐
ber	of	months	back	in	time	required	to	achieve	50%	(M50)	or	75%	(M75)	
of	the	total,	cumulative	importance	of	climate	for	growth.	That	is,	M50 

and M75	are	number	of	months	into	the	past	at	which	the	cumulative	
weight	first	exceeds	0.5	or	0.75,	respectively.	The	cumulative	weights	
are	obtained	by	summing	the	individual,	monthly	weights,	wt,m,dr,	from	
December	of	the	current	year	of	growth	(y	=	0)	up	to	each	month	into	
the	past,	akin	to	a	cumulative	probability.	For	example,	if	the	sum	of	
the	wt,m,dr	(summed	over	all	m)	for	the	year	of	ring	formation	(y	=	0)	and	
the	year	prior	to	ring	formation	(y	=	1)	was	0.5,	then	M50	=	24	months	
for	example.	Since	we	estimated	unique	wt,m,dr	for	drought	(dr	=	1)	and	
non‐drought	years	(dr	=	0),	this	also	allowed	us	to	compare	the	climatic	
memory	between	these	two	types	of	climatic	conditions.

2.4.1 | Prior specification

For	 each	 region,	 the	model	 defined	 in	 Equations	 (1)	 and	 (2)	was	
implemented	in	a	hierarchical	Bayesian	framework.	The	site‐level	
antecedent	 climate	 effects	 (β ’s)	 were	 given	 hierarchical	 normal	
priors	 that	 varied	 around	 region‐level	 means	 with	 region‐level	
variances,	 for	each	 level	of	d	 representing	 the	number	of	 recent	
droughts.	 Each	 of	 these	 region‐level	 means	 were	 also	 given	 hi‐
erarchical	 normal	 priors	 that	 varied	 around	 global	 means	 (i.e.,	
across d),	with	diffuse	normal	priors	assigned	to	the	global	means.	
The	site‐level	intercept	and	autoregressive	effect	(α’s)	were	mod‐
eled	 identically	 except	 that	 they	 did	 not	 vary	with	d	 (i.e.,	 single	
intercept	and	autoregressive	term	for	each	site	c).	The	antecedent	
importance	weights	(w’s)	were	assigned	relatively	noninformative	
Dirichlet	priors	for	each	‘group’	of	monthly	weights	(grouped	by	dr)	
such	that	the	sum	of	all	weights—across	all	months,	m, and years, y, 

for	each	level	of	dr,	for	a	given	climate	covariate—is	exactly	1	(see	
Peltier	et	al.,	2018	for	more	details).	The	model	was	applied	sepa‐
rately	 for	each	 region	 such	 that	 all	 parameters	varied	by	 region.	
The	full	model	code	is	provided	in	Appendix	S1.

2.4.2 | Implementation

The	model	was	fit	in	JAGS	4.0.0	(Plummer,	2003)	via	the	R	(R	Core	
Team,	2019)	package	 rjags	 (Plummer,	2013).	The	posterior	param‐
eter	 space	 was	 sampled	 via	 Markov	 chain	 Monte	 Carlo	 (MCMC)	
techniques,	and	three	MCMC	chains	were	run	in	parallel	on	a	high	
performance	 super‐computing	 cluster.	 All	 stochastic	 parameters	
were	monitored	 until	 convergence	was	 achieved	 (>100,000	 itera‐
tions),	at	which	point	the	model	was	updated	for	another	100,000	
iterations	 per	 chain.	 This	 produced	 a	 posterior	 sample	 of	 ≥3,000	
relatively	independent	samples	after	thinning	the	chains.

2.4.3 | Prediction scenarios

To	 understand	 how	 differences	 in	 climate	 sensitivities	 associated	
with	 drought	 legacies	 may	 effect	 RWI	 predictions,	 we	 first	 evalu‐
ated	model	 fit	 (as	 coefficients	 of	 determination,	R2,	 obtained	 from	
a	regression	of	replicated	vs.	observed	RWI)	of	the	full	model	(‘Full’),	

where	the	full	model	is	described	by	Equations	(1)	and	(2).	We	then	
used	the	posterior	samples	of	all	parameters	to	evaluate	the	fit	of	two	
additional	‘models’	(prediction	scenarios)	that	ignore	either	legacy	ef‐
fects	 (‘NoL’),	 or	 ignore	 compounded	 legacies	 (‘NoCL’;	 see	 Table	 1).	
These	models	were	 not	 fit	 to	 the	 data,	 rather	 replicated	 RWI	was	
predicted	using	incomplete	sets	of	parameter	values	obtained	from	
the	 full	model’s	 posterior	 distribution.	 This	 allowed	 us	 to	 evaluate	
the	impact	of	ignoring	certain	parameters	describing	various	types	of	
drought	legacies	on	predicted	RWI.	The	NoL	scenario	used	only	the	
climate	effects	(β’s)	and	importance	weights	(w’s)	estimated	for	peri‐
ods	defined	by	no	recent	droughts	(d = dr	=	0)	to	predict	RWI	across	
all	site‐years	(Table	1).	The	NoCL	scenario	used	only	two	groups	of	
β’s	and	w’s,	the	ones	representing	no	recent	droughts	(d = dr	=	0),	and	
those	representing	the	‘single‐drought’	scenario	(d = dr	=	1);	the	‘sin‐
gle‐drought’	values	were	applied	when	any	number	of	droughts	had	
occurred	in	the	previous	4	years	(i.e.,	for	d	=	1,	2,	or	3;	Table	1).	Recall	
we	did	not	estimate	unique	weights	(w’s)	for	d	=	1,	2,	and	3,	but	only	
assumed	a	single	set	of	‘drought’	w’s	(dr	=	1)	when	d	=	1,	2,	or	3;	thus,	
only	the	values	of	the	β’s	differ	between	the	Full	and	NoCL	scenarios.	
All	models	use	the	same	intercept	and	autoregressive	parameters	(α’s)	
since	these	parameters	do	not	differ	by	d or dr.

Finally,	 drought	 legacy	 effects	may	 be	 partially	 explained	 by	
how	tree	growth	responds	to	the	cumulative	effects	of	climate	ex‐
perienced	over	the	past	4	years,	as	captured	by	the	SAM	definition	
of	the	antecedent	climate	variables	(Peltier	et	al.,	2018),	regardless	
of	whether	or	not	a	drought	occurred	during	that	period.	Thus,	to	
explore	the	effect	of	using	the	SAM	model	to	learn	about	legacy	
effects,	an	additional	model	was	fit	 to	the	data	 (‘Full2’)	 that	was	
identical	 to	the	aforementioned	Full	model	 (and	new	parameters	
were	 estimated),	 except	 the	 antecedent	weights	were	 only	 esti‐
mated	for	the	previous	24	months	(Table	1),	representing	the	year	
of	ring	formation	and	the	prior	year.	This	approach	is	more	similar	
to	non‐SAM	modeling	approaches	that	only	consider	the	effects	of	
climate	during	the	year	of	ring	formation	and	during	the	year	prior	
to	ring	formation.	Then,	identically	to	above,	we	evaluated	the	fit	
of	a	no	legacies	model	(prediction	scenario)	when	antecedent	cli‐
mate	was	modeled	for	this	shorter	lag	period	of	2	years	(‘NoL2’).

3  | RESULTS

Differences	 between	 observed	 and	 predicted	 growth	 from	 the	
single‐predictor	model	 following	 single	 droughts	 (Figure	 2a,	 see	
Section	 2.3)	 are	 comparable	 to	 those	 reported	 by	 Anderegg,	
Schwalm,	et	al.	(2015)	for	both	Pinaceae	and	sensitive	sites	across	
all	 species.	 Repeated	 droughts	 further	 reduced	 ring	 widths	 for	
all	three	regions	(Figure	2b).	Reductions	tended	to	be	greatest	in	
the	SW	and	similar	 in	 the	 IM	and	NW	regions.	Mean	 reductions	
from	three	recent	droughts	were	21%	in	the	NW	and	25%	in	the	
IM.	Notably,	mean	 reductions	 from	three	 recent	droughts	 in	 the	
SW	were	nearly	40%,	but	much	 larger	 reductions	were	possible	
under	 ‘triple‐droughts’	 in	 this	 region	 (note	 standard	 deviations,	
Figure	2b).
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The	fit	of	the	full	model	was	fairly	high,	with	region‐specific	coef‐
ficients	of	determination	(R2)	of	0.68	(SW),	0.56	(IM),	and	0.70	(NW).	
Unexplained	variability	 is	 likely	due	 to	unaccounted	 for	variation	 in	
memory	 (e.g.,	 antecedent	 climate	weights	 are	 estimated	 at	 the	 re‐
gional	 level,	 not	 site	 level,	 representing	 regional	 averages	 in	mem‐
ory),	particularly	across	the	large	area	contained	within	the	IM	region	
(Figure	S1).	 (Antecedent	 importance	weights	are	 reported	 in	Figure	
S1.)	 Residual	 variation	 could	 also	 reflect	 relatively	 coarse	 (gridded)	
climate	data	that	imperfectly	capture	site‐level	conditions.	First‐order	
autocorrelation	(αc,2

,	Equation	1)	was	highest	in	the	NW	(0.65	±	0.01;	
posterior	 mean	 ±	 SD),	 compared	 to	 the	 other	 two	 regions	 (IM:	
0.39	±	0.01	and	SW:	0.46	±	0.01),	and	the	intercept	was	the	lowest	
for	the	NW	(NW:	0.35	±	0.01,	compared	with	 IM:	0.62	±	0.01	and	
SW:	0.58	±	0.01).

Repeated	droughts	 incur	additional	changes	 in	climate	response	
over	 single‐drought	 events	 in	 all	 three	 regions,	 with	 convergent	
changes	in	precipitation	sensitivity	(Figure	3a),	but	divergent	changes	
in	temperature	sensitivity	(Figure	3b).	When	there	have	been	no	re‐
cent	droughts	(d	=	0),	all	three	regions	respond	positively	to	precipi‐
tation	(Figure	3a),	negatively	to	temperature	and	PDSI	(Figure	3b,c),	
and	negatively	to	the	Pant × Dant	interaction	(though	magnitudes	may	
strongly	differ,	Figure	3d).	A	negative	PDSI	effect	is	consistent	with	
our	previous	work	that	analyzed	a	subset	of	these	climate	and	tree‐
ring	 datasets	 using	 a	 similar	 modeling	 framework	 (Peltier	 &	 Ogle,	
2019).	Since	 this	covariate	 is	analogous	 to	a	precipitation	by	 (nega‐
tive)	temperature	interaction,	the	negative	PDSI	effects	simply	reflect	

greater	sensitivity	of	ring	width	to	precipitation	when	it	is	warm	(that	
is,	when	‘negative	temperature’	is	low)	(Peltier	&	Ogle,	2019).

Different	P. ponderosa	regions,	however,	show	different	responses	
to	compounded	drought,	with	 the	NW	responding	differently	 than	
either	the	SW	or	 IM.	 In	the	SW	and	IM,	sensitivity	to	precipitation	
is	reduced	by	drought,	and	the	reduction	is	greatest	with	more	(two	
or	three)	recent	droughts,	while	temperature	sensitivity	is	more	neg‐
ative	and	variable	 (Figure	3a,b).	 In	the	NW,	precipitation	sensitivity	
is	less	strongly	influenced	by	drought	in	general,	while	temperature	
sensitivity	changes	from	negative	to	not	different	from	zero	or	even	
slightly	positive	under	increased	drought	frequency	(Figure	3a,b).	The	
PDSI	effect	is	similar	across	drought	types	in	the	SW	and	IM,	but	it	
becomes	nonsignificant	with	more	(two	or	three)	recent	droughts	in	
the	NW	(Figure	3c).	The	Pant × Dant	 interactions	are	small,	but	rela‐
tively	similar	across	numbers	of	recent	droughts	for	the	SW	and	IM,	
but	in	the	NW	changes	sign	from	single	(negative)	to	compound	(pos‐
itive)	droughts	(Figure	3d).	The	Tant × Dant	interactions	are	also	small,	
mostly	not	significant,	and	relatively	similar	across	all	regions,	but	of	
largest	magnitude	(negative)	for	single‐drought	years	in	the	SW	and	
NW	(Figure	3e).	These	 interactions	suggest	nonlinear	 responses	 to	
precipitation	regardless	of	drought	conditions,	and	a	mostly	linear	re‐
sponse	to	temperature	except	following	single	droughts.

Prediction	scenarios	that	ignore	drought	legacies	(NoL	and	NoCL)	
agree	with	the	full	model	(Full)	and	observed	RWI	during	non‐drought	
periods,	but	tend	toward	systematic	prediction	errors	during	drought	
periods.	However,	the	direction	(over‐	vs.	underpredict)	and	magnitude	

Scenario Equation Description

Models	fit	to	data

Full !y,c="c,1+"c,2RWIy−1,c+#c,d(y),1P
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y,c

+… 

where Xant
y,c

=

4
∑
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12
∑

m=1

wt,m,dr ⋅Xy−t,m,c

As	described	in	Equations	(1)	 
and	(2)

Full2 !y,c="′
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+"′
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′
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+… 
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′

y,c
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1
∑
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12
∑
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w′

t,m,dr
⋅Xy−t,m,c

Same	as	Full	model,	but	 
antecedent	lag	is	only	 
24	months	(t = 0 and 1,  

representing	year	of	ring	 
formation	and	year	prior)

Scenario Parameters used in scenarios Description

Prediction	scenarios

NoL αc,k;	for	k = 1, 2 

!c,d∗ ,k;	for	k	=	1,	2,	…,	5,	and	 
where	d*	=	0	if	d	=	0,	1,	2,	or	3 

wt,m,dr∗;	where	dr*	=	0	if	dr = 0 or 1

Predict	all	years	with	 
‘no‐drought’	parameters	 
from	Full	model

NoCL αc,k;	for	k = 1, 2 

!c,d∗ ,k;	for	k	=	1,	2,	…,	5,	and	where	d*	=	0	if	
d = 0 or d*	=	1	if	d	=	1,	2,	or	3 

wt,m,dr

Predict	all	years	with	either	
‘no‐drought’	or	‘single‐drought’	
parameters	from	Full	model

NoL2 !′

c,k
;	for	k = 1, 2 

!′
c,d∗ ,k

;	for	k	=	1,	2,	…,	5,	and	where	d*	=	0	if	
d	=	0,	1,	2,	or	3 

w′

t,m,dr∗
;	where	dr*	=	0	if	dr = 0 or 1

Predict	all	years	with	 
‘no‐drought’	parameters	 
(similar	to	NoL	scenario),	 
except	with	parameters	 
from	Full2	model

TA B L E  1  Summary	of	the	Full	model	
that	is	the	main	focus	of	this	analysis	
(Equations	1	and	2),	the	Full2	model,	and	
the	prediction	scenarios	used	to	evaluate	
the	effect	of	ignoring	drought	legacies	
on	prediction	error.	The	Full2	model	is	
identical	to	the	full	model	except	only	
a	2‐year	period	(year	of	ring	formation	
and	prior	year)	is	used	to	compute	
the	antecedent	covariates	(compared	
to	the	full	model’s	5‐year	period	that	
includes	the	year	of	ring	formation	and	
prior	4	years).	Only	the	Full	and	Full2	
models	were	fit	to	data,	separately	for	
each	region,	and	the	results	(parameter	
estimates,	including	effects	[α and β 

terms]	and	weights	[w	terms])	were	used	
to	compute	predicted	growth	based	
on	the	‘prediction	scenarios’,	which	
simply	use	subsets	of	the	fitted	model	
(Full	and	Full2)	parameters.	Prediction	
error	was	evaluated	from	coefficients	of	
determination	(R2)	between	observed	and	
predicted	RWI.	Parameter	estimates	are	
only	reported	in	the	results	for	the	full	
model
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of	this	error	varies	by	region	and	scenario	(Figure	4a–c	and	inset	text).	
In	certain	years,	mean	predictions	from	the	different	prediction	sce‐
narios	 approach	 the	 limits	 of	 the	 95%	 credible	 intervals	 of	 the	 full	
model	 predictions,	 typically	 during	 periods	 of	 widespread	 drought.	
In	the	SW	and	IM,	on	average,	prediction	scenarios	ignoring	drought	

legacies	 consistently	 underestimate	 RWI	 (Figure	 4a,b;	 Figure	 S2),	
while	in	the	NW,	they	tend	to	overestimate	RWI	(Figure	4c;	Figure	S2).	
Notably,	 the	 prediction	 scenario	 that	 ignores	 compounded	 drought	
legacies	(NoCL)	has	only	slightly	diminished	R2	(difference	of	~0.015)	
compared	to	the	full	model	across	all	regions	(Figure	4d–f).	Error	in	the	

F I G U R E  2  Summary	of	drought	legacy	effects	in	populations	of	Pinus ponderosa.	(a)	Legacy	effects	following	single	droughts	estimated	
from	ring‐width	indices	(RWI)	for	P. ponderosa	(gray	squares	and	line,	this	study,	from	‘single‐predictor	model’),	superimposed	on	the	legacy	
effects	for	all	International	Tree	Ring	Data	Bank	(ITRDB)	sites	that	correlated	significantly	with	climatic	water	deficit	(black	points	and	line	
with	red	shading)	and	for	the	subset	of	those	sites	representing	species	in	the	Pinaceae	family	(green	diamonds	and	line	with	green	shading),	
with	the	latter	two	obtained	with	permission	from	Anderegg,	Schwalm,	et	al.	(2015).	Following	Anderegg,	Schwalm,	et	al.	(2015),	legacy	
effects	for	P. ponderosa	are	calculated	as	the	difference	between	observed	and	predicted	growth	following	drought	and	error	is	shown	as	
bootstrapped	95%	confidence	intervals	(error	bars)	around	means	(n	=	5,000	resamplings).	Here,	predicted	growth	is	estimated	based	on	
pre‐drought	relationships	with	July	Palmer	Drought	Severity	Index	(PDSI)	and	site‐years	supporting	a	PDSI	less	than	the	5th	percentile	of	
the	site‐level	average	PDSI	are	considered	droughts.	(b)	RWI	(mean	+	SD)	for	each	region	(SW	=	black,	IM	=	dark	gray,	NW	=	light	gray)	where	
either	0,	1,	2,	or	3	droughts	have	occurred	during	the	current	and	preceding	4	years	(5	years	total).	Note	that	detrending	for	age	adjusts	the	
mean	of	the	RWI	across	all	years	for	a	given	core	to	1,	so	that	the	mean	RWI	in	years	with	no	recent	droughts	is	slightly	greater	than	1

F I G U R E  3  Changes	in	climate	sensitivities	(posterior	means	and	95%	credible	intervals	[CIs]	for	α’s;	see	Equation	1)	from	non‐drought	
years	(Recent	droughts	=	0)	incurred	when	one,	two,	and	three	droughts	have	occurred	during	the	past	5	years	(4	years	preceding	the	
growing	season)	for	each	of	the	three	climate	covariates	(a–c)	and	the	two‐way	interactions	(d,	e)	for	each	of	the	three	regions	(SW	=	black,	
IM	=	dark	gray,	NW	=	light	gray).	Climate	variables	are	antecedent	precipitation	(Pant),	temperature	(Tant),	and	Palmer	Drought	Severity	Index	
(PDSI)	(Dant).	CIs	that	do	not	include	zero	are	deemed	significant;	if	a	CI	for	one	α	does	not	contain	the	posterior	mean	for	another	α	(within	
the	same	plot),	then	the	two	parameters	(α’s)	are	significantly	different	from	each	other	(p	<	0.05)
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NoL2	scenario	was	always	in	the	same	direction	(under‐	vs.	overpre‐
dict)	as	the	NoL	and	NoCL	scenarios	in	a	given	region,	but	performed	
worse	than	the	NoL	scenario	in	the	SW	(lower	R2),	comparatively	in	the	
IM,	and	better	in	the	NW	(higher	R2,	Figure	4).

Climatic	memory	was	strongly	influenced	by	drought	in	the	SW	and	
IM,	with	the	largest	shifts	in	the	memory	(particularly	M75)	of	anteced‐
ent	temperature	and	PDSI	conditions	(Table	2).	Though,	while	the	direc‐
tion	of	change—shortening	or	lengthening	of	memory	during	drought	
periods—varied	across	subspecies,	the	magnitude	of	change	somewhat	
aligned	with	regional	differences	in	prediction	error	among	prediction	
scenarios.	 In	 the	SW,	 for	example,	precipitation	and	PDSI	conditions	
experienced	further	into	the	past	(M75	was	12	and	20	months,	respec‐
tively,	 longer	 during	 drought	 periods)	 were	 more	 important	 during	
drought	years	(Table	2).	In	contrast,	in	the	IM,	drought	conditions	led	
to	 large	 shifts	 in	 importance	 to	more	 recent	 temperature	 and	 PDSI	
conditions	 (M75	was	 31	 and	 23	months,	 respectively,	 shorter	 during	
drought	periods).	Thus,	in	these	two	regions	(SW	and	IM),	there	were	
shifts	in	the	M75	of	single	climate	covariates	of	up	to	nearly	2–3	years	in	
response	to	drought(s).	In	the	NW,	as	in	the	SW,	less	recent	PDSI	con‐
ditions	were	more	important	during	drought	years,	but	this	shift	was	
comparatively	small	(at	most	9	months,	Table	2).

F I G U R E  4  Predicted	ring‐width	indices	(RWI;	posterior	mean)	when	considering	drought	legacies	based	on	the	full	model	(black	solid	
lines)	are	overlaid	with	scenarios	that	ignore	legacies:	NoCL	(blue),	NoL	(orange),	and	NoL2	(purple),	along	with	the	observed	RWI	(gray	
points),	for	each	region:	(a)	SW,	(b)	IM,	and	(c)	NW.	The	associated	coefficient	of	determination	(R2)	from	a	regression	of	the	observed	versus	
predicted	RWI	for	each	model	or	prediction	scenario	(bars)	is	provided	for	the	(d)	SW,	(e)	IM,	and	(f)	NW	regions.	See	Table	1	for	description	
of	prediction	scenarios.	The	dashed	black	lines	denote	the	95%	credible	interval	(CI)	for	the	full	model	predictions.	Mean	±	SD	of	the	
differences	between	prediction	scenarios	(NoCL—blue,	NoL—orange,	and	NoL2—purple)	relative	to	(minus)	the	full	model	predictions	during	
drought	periods	are	noted	(colored	text)	in	the	upper	right	of	panels	(a–c).	Intermittent	gray	shading	along	the	x‐axis	in	each	of	panels	(a–c)	
summarizes	the	number	of	sites	experiencing	one	(top	row	of	shading),	two	(middle	row),	or	three	(bottom	row)	droughts	in	the	past	5	years	
(current	water	year	and	four	previous	water	years),	where	darker	shading	indicates	more	sites	experienced	drought	in	a	given	year

TA B L E  2  Climatic	memory,	or	the	number	of	months	back	in	
time	at	which	50%	(M50)	or	75%	(M75)	of	the	climate	importance	
weight	is	achieved	for	each	region	(SW,	IM,	and	NW)	and	covariate	
(Pant, Tant and Dant).	Values	of	non‐drought	(dr	=	0)	and	drought	year	
(dr	=	1)	memory	are	separated	by	a	‘/’	(dr = 0/dr	=	1).	The	associated	
change	in	memory	(δ)	between	non‐drought	(dr	=	0)	and	drought	
years	(dr	=	1)	is	also	reported,	where	negative	values	indicate	
comparatively	longer	memory	during	drought	years,	or	an	influence	
of	climatic	conditions	further	back	in	time,	and	positive	values	
indicate	comparatively	shorter	memory	during	drought	years

Covariate

SW IM NW

dr = 0/1 δ dr = 0/1 δ dr = 0/1 δ

Pant

M50 13/13 0 14/14 0 17/16 1

M75 22/34 −12 26/25 1 29/31 −2

Tant

M50 16/15 1 39/15 24 20/20 0

M75 40/37 3 45/29 31 45/49 −4

Dant

M50 10/13 −3 27/15 12 17/26 −7

M75 13/33 −20 47/24 23 26/35 −9
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4  | DISCUSSION

4.1 | Impacts of compounded drought

Consistent	 with	 interpretation	 that	 drought	 legacies	 result	 from	
physiological	 impairment	 caused	 by	 drought‐induced	water	 stress	
(Anderegg,	Schwalm,	et	al.,	2015;	Peltier	et	al.,	2016),	compounded	
drought	resulted	 in	additional	decreases	 in	average	ring	width	and	
changes	 in	 growth–climate	 sensitivities	 in	 all	 three	 P. ponderosa 

regions	 (Figure	2b).	Underlying	causes	of	drought	 legacies	are	po‐
tentially	 numerous,	 but	 major	 mechanisms	 likely	 include	 induced	
hydraulic	 dysfunction	 (cavitation)	 and	 reduced	NSC	 stores,	 which	
combine	to	limit	post‐drought	growth	due	to	slow	recovery	of	water	
transport	capacity	and	associated	carbon	gain	(Trugman	et	al.,	2018).	
Drought	 during	 the	 recovery	 period	 likely	 further	 reduces	 NSC	
stores	if	photosynthetic	carbon	gain	is	also	impaired	(West,	Hultine,	
Jackson,	&	Ehleringer,	2007;	Williams	&	Ehleringer,	2000),	and	may	
further	 reduce	 stem	 conductance	 if	 trees	 experience	 additional	
xylem	cavitation	or	production	of	new	sapwood	is	limited	(Plaut	et	
al.,	2013;	Resco	et	al.,	2009);	any	of	these	mechanisms	would	lead	to	
reduced	post‐drought	growth	and	longer	recovery	times.

Consistent	with	hydraulic	damage	or	NSC	depletion,	decreased	
precipitation	sensitivity	with	more	recent	droughts	in	the	SW	and	
IM	regions	suggests	trees	are	unable	to	effectively	respond	to	fa‐
vorable	post‐drought	conditions	(Figure	3a).	Similarly,	simultaneous	
increases	in	the	magnitude	of	the	temperature	sensitivity	of	growth	
(i.e.,	more negative effects)	suggest	either	a	more	conservative	water‐
use	strategy	or	greater	hydraulic	impairment	under	warmer	drought	
in	SW	and	IM	populations	of	P. ponderosa	 (Figure	3).	While	angio‐
sperms	 may	 experience	 cumulative	 cavitation	 fatigue	 (Anderegg	
et	al.,	2013),	in	conifers,	decreased	lumen	diameter	of	tracheids	fol‐
lowing	drought	may	reduce	conducting	capacity	preceding	dieback	
(Pellizzari,	 Camarero,	 Gazol,	 Sangüesa‐Barreda,	 &	 Carrer,	 2016),	
and	hydraulic	segmentation	may	limit	the	response	of	trees	to	mois‐
ture	 pulses	 following	 hydraulic	 impairment	 of	 organs	with	 higher	
resistance	(Plaut	et	al.,	2013).	Damaged	needles	following	drought	
would	also	likely	reduce	post‐drought	growth	and	limit	recovery	in	
conifers	with	multiyear	 needle	 crops	 (Fritts,	 1976;	 Galiano	 et	 al.,	
2011).	 If	 defoliation	 reduces	 canopy	 area	 to	 conductive	 sapwood	
area	(‘hydraulic	architecture’),	this	could	improve	water	status	in	the	
short	term,	but	reduce	capacity	to	benefit	from	subsequent	mois‐
ture	 (Magnani,	 Grace,	 &	 Borghetti,	 2002).	 Further	 defoliation	 or	
needle	damage	with	additional	drought(s)	would	more	significantly	
reduce	 growth	 potential.	 Similar	 dynamics	 could	 also	 result	 if	 re‐
duced	post‐drought	growth	occurs	in	response	to	depletion	of	deep	
soil	moisture.	Notably,	trees	from	the	NW	population	appear	to	re‐
spond	differently	than	IM	and	SW	trees,	with	smaller	decreases	in	
precipitation	sensitivities	(only	to	single	droughts,	Figure	3a)	and	a	
loss	of	 sensitivity	 to	both	 temperature	 (Figure	3b)	 and	PDSI	with	
increasing	drought	frequency	(Figure	3c).	Thus,	the	degree	to	which	
the	above	mechanisms	apply	to	trees	in	the	NW	region	is	unclear.

Drought	stress	can	also	reduce	sink	strength	(i.e.,	growth)	inde‐
pendently	of	photosynthesis	(e.g.,	Lempereur	et	al.,	2015),	and	this	
may	account	for	part	of	the	reduced	ring	widths	observed	across	

species.	However,	 there	 is	no	evidence	for	 lagged	 (multiyear)	ef‐
fects	of	compounded	or	repeated	droughts	on	sink	limitation.	On	
the	contrary,	these	effects	are	 likely	more	relevant	on	weekly	to	
seasonal	timescales,	and	it	has	been	suggested	that	sink	limitation	
could	lead	to	greater	than	expected	post‐drought	growth	(higher	
sensitivity	of	growth	than	photosynthesis	to	mild	drought	would	
lead	to	NSC	accumulation;	McDowell,	2011),	which	is	not	consis‐
tent	with	the	mean	responses	observed	for	P. ponderosa	over	the	
past	century	(Figure	2b).	Regardless	of	the	relative	importance	of	
active	or	passive	components	of	NSC	dynamics,	in	the	context	of	
more	frequent	drought,	NSC	is	 likely	to	eventually	become	limit‐
ing.	This	is	consistent	with	recent	work	in	some	deciduous	species	
showing	allocation	to	canopy	and	leaf‐level	photosynthesis	is	up‐
regulated	in	the	year	after	drought	(Kannenberg	et	al.,	2019),	sug‐
gesting	prioritization	of	carbon	uptake	following	drought.	Thus,	on	
the	timescales	of	interest	here	(multiple	years),	depletion	(Adams	
et	al.,	2017)	or	loss	of	access	to	(Sala	&	Hoch,	2009)	to	NSC	pools	
is	likely	most	relevant	to	how	NSC	dynamics	contribute	to	drought	
legacies,	though	sink	limitation	may	play	a	minor	role	in	NW	trees	
(see	below).	More	studies	are	necessary	to	determine	the	interact‐
ing	roles	of	NSC	depletion	and	sink	limitations	in	lagged	effects	of	
climate	across	multiple	years.

4.2 | Distinct regional responses to 
compounded drought

Variation	in	drought	tolerance	among	populations	will	 likely	play	a	
major	role	in	the	persistence	of	slowly	migrating	tree	species	under	
increasing	drought	associated	with	global	climate	change	(Chen	et	
al.,	 2010;	 Iverson	 &	 Prasad,	 1998).	 Here,	 we	 find	 convergent	 re‐
sponses	 to	 precipitation	 and	 divergent	 responses	 to	 temperature	
and	 PDSI	 under	 compounded	 droughts	 among	 SW/IM	 trees	 and	
NW	trees	(Figure	3a–c).	While	many	different	P. ponderosa subspe‐
cies	have	been	proposed,	the	delineation	between	western	and	in‐
terior	varieties	is	widely	recognized	(e.g.,	Conkle	&	Critchfield,	1988;	
Norris	et	al.,	2006).	Rapid	range	expansion	northward	from	a	prob‐
able	origin	in	northern	Mexico	along	the	eastern	and	western	sides	
of	 the	 Great	 Basin	 produced	 two	 distinct	 populations	 during	 the	
past	14,000	years	 (but	see	Potter,	Hipkins,	Mahalovich,	&	Means,	
2013),	with	only	limited	gene	flow	occurring	more	recently	through	
a	hybrid	zone	in	western	Montana	(Latta	&	Mitton,	1999).	Here,	SW	
and	 IM	P. ponderosa	 represent	 the	 interior	 variety,	while	 the	NW	
region	is	part	of	the	western	variety	(Figure	1).	These	results	suggest	
consideration	of	the	evolutionary	history	of	a	species	when	study‐
ing	or	predicting	 responses	of	 trees	and	 forests	 to	more	 frequent	
drought	is	important.

Elevation,	 regional	 differences	 in	 drought	 frequency	 and	 inten‐
sity,	or	simply	climatically	insensitive	trees	in	the	NW	could	also	ex‐
plain	population	differences,	among	other	 factors.	 In	Arizona,	New	
Mexico,	 Colorado,	 and	 Utah,	 P. ponderosa	 is	 found	 near	 or	 above	
2,100	m,	but	is	commonly	found	down	to	~450	m	in	the	Pacific	NW	
(Fryer,	2018).	The	degree	of	synchrony	between	drought	or	drought‐
related	fire	behavior	and	regional	atmospheric	teleconnections	may	
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also	be	different,	where	interannual	moisture	variability	in	the	SW	is	
closely	tied	to	La	Niña‐related	precipitation	extremes	and	the	North	
American	Monsoon	(e.g.,	Cole,	Overpeck,	&	Cook,	2002;	Westerling	
&	Swetnam,	 2003).	 In	 the	Pacific	NW,	 relatively	 slow	variability	 in	
the	 Pacific	 Decadal	 Oscillation	 may	 more	 strongly	 drive	 regional	
drought	(Hessl,	McKenzie,	&	Schellhaas,	2004),	and	correlations	with	
tree	 growth	 appear	weaker	or	more	 spatially	 variable	 (Kipfmueller,	
Larson,	&	St	George,	2012;	Schoennagel,	Veblen,	Romme,	Sibold,	&	
Cook,	2005)	compared	to	relationships	with	ENSO	in	the	SW	and	IM	
(Peltier	&	Ogle,	2019).	Finally,	NW	trees	in	this	dataset	are	generally	
less	sensitive	to	climate	(Figure	3):	their	ring	widths	show	higher	au‐
tocorrelation	(see	Section	3)	and	wider	mean	raw	ring	widths	(before	
detrending,	ring	width	averages	(1895–2011)	are	NW:	1.4	±	2.7	mm,	
IM:	0.64	±	0.56	mm,	and	SW:	0.76	±	0.67	mm),	indicative	of	generally	
less	variable	and	more	mesic	conditions	(Douglass,	1941).	As	a	result,	
competition	and	biotic	interactions	may	play	a	larger	role	in	observed	
drought	responses	in	these	higher	density	forests	(Young	et	al.,	2017).

4.3 | Implications of regional differences in 
prediction error

Scenarios	 that	 ignored	 legacy	effects	of	drought	 (NoL,	NoCL,	 and	
NoL2	prediction	scenarios)	systematically	underpredicted	growth	in	
interior	P. ponderosa	populations	(SW	and	IM).	This	suggests	adaptive	
adjustments	 (plasticity)	 in	growth–climate	sensitivities	 in	 response	
to	 droughts	 in	 these	 populations.	 In	 particular,	 during	widespread	
drought,	drought‐related	changes	in	growth–climate	sensitivities	in	
interior	populations	(SW	and	IM,	Figure	3)	result	in	greater	growth	
than	predicted	if	trees	did	not	adjust	their	sensitivities	(Figure	4a,b).	
Interior	 P. ponderosa,	 particularly	 in	 the	 SW	 region,	 experience	
strong	 interannual	 variability	 in	 both	 cold‐	 and	warm‐season	 pre‐
cipitation,	and	another	study	indicates	P. ponderosa	and	other	coni‐
fer	species	show	plasticity	 in	precipitation	responses	at	subannual	
timescales	 following	 drought	 (Peltier	&	Ogle,	 2019).	 Sensitivity	 to	
climate	 in	general	 is	highest	 in	 interior	varieties,	potentially	due	to	
local	adaptation	to	highly	variable	climate	(McCullough	et	al.,	2017).

We	suggest	that	interior	trees	(SW	and	IM)	may	be	more	plastic	
in	their	response	to	climate	variability	in	general.	This	is	consistent	
with	 large	changes	 in	 the	climatic	memory	of	SW	trees:	precipita‐
tion	and	PDSI	conditions	experienced	further	into	the	past	are	more	
important	for	growth	following	drought	(Table	2).	This	suggests	the	
potential	for	a	greater	reliance	on	stored	NSC	from	previous	grow‐
ing	seasons.	However,	IM	trees	show	a	different	response,	whereby	
droughts	lead	to	much	shorter	climatic	memory,	suggesting	greater	
inhibition	 by	more	 recent	 (by	more	 than	 2	 years)	 warm	 tempera‐
ture	conditions	during	drought	periods	(Table	2,	recall	temperature	
effects	 are	 negative).	 A	 recent	 study	 showed	 P. ponderosa	 stores	
more	NSCs	when	growing	under	drier	a	climate,	either	as	an	active	
(upregulated;	e.g.,	Dietze	et	al.,	2014)	or	passive	 (sink‐limited;	e.g.,	
Hagedorn	et	al.,	2016;	McDowell	et	al.,	2008)	response	to	drought	
limitation	 on	 photosynthesis	 (Piper,	 Fajardo,	 &	 Hoch,	 2017).	 This	
could	 suggest	 trees	 at	 more	 arid	 sites	 have	 relatively	 more	 NSC	
available	 during	 droughts	 or	when	 drought	 stress	 is	 released,	 but	

similar	starch	concentrations	and	higher	sugar	concentrations	across	
tissues	at	the	dry	site	(Piper	et	al.,	2017),	suggests	regulation	of	os‐
motic	 potential	 under	 higher	moisture	 stress	 (Huang	 et	 al.,	 2019).	
A	 shift	 toward	more	negative	effects	of	more	 recent	 temperature	
during	and	following	drought	could	also	reflect	sink	limitation	if	IM	
trees	are	less	adapted	to	high	temperatures	than	SW	populations.

Conversely,	scenarios	that	ignored	the	legacy	effects	of	drought	
generally	overpredicted	growth	in	Pacific	NW	populations	of	P. pon-
derosa	(Figure	4c).	Shifts	in	climatic	memory	associated	with	drought	
were	also	comparatively	small	(Table	2).	This	suggests	that	growth–
climate	sensitivities	 in	 this	 region	also	are	 influenced	by	repeated	
droughts,	but	in	a	manner	more	consistent	with	induced	physiolog‐
ical	damage	 following	drought	events	 (Anderegg,	Schwalm,	et	 al.,	
2015),	or	lower	NSC	stores,	which	would	result	in	limited	buffering	
capacity	during	droughts.	There	is	limited	evidence	for	lower	NSC	
storage	in	P. ponderosa	growing	under	more	mesic	climate	conditions	
(Piper	et	al.,	2017).	Interior	trees	may	experience	greater	cavitation	
during	drought	than	NW	populations,	as	arid‐region	conifers	show	
the	 strongest	 legacies	 (Anderegg,	 Schwalm,	 et	 al.,	 2015)	 and	 the	
greatest	reduction	in	precipitation	sensitivities	(Figure	3a).	But	it	is	
also	possible	they	are	better	adapted	to	rely	on	NSC	stores	during	
periods	 of	 widespread	 regional	 drought	 (Figure	 3).	 As	 discussed	
above,	 the	 characteristics	 and	 intensity	 of	 drought	 may	 strongly	
differ	 between	 the	 SW/IM	 and	NW	 regions,	which	may	 also	 un‐
derlie	differences	 in	tree	growth	responses.	A	shift	toward	 insen‐
sitivity	 or	 slight	 positive	 sensitivity	 to	 temperature	 with	 drought	
in	the	NW	(Figure	3b)	could	suggest	sink	(growth)	limitation	under	
milder	drought	conditions	 in	that	region,	though	this	dynamic	has	
primarily	been	shown	in	angiosperms	(Delpierre,	Berveiller,	Granda,	
&	Dufrêne,	2016).	Manipulative	experiments	are	likely	necessary	to	
fully	understand	these	regional	differences.

4.4 | Compounded drought legacies are partially 
explained by SAM

Widely	 cited	 syntheses	 of	 legacy	 effects	 of	 drought	 in	 tree	 and	
ecosystem	 productivity	 draw	 the	 obvious	 conclusion	 that	 more	
frequent	 drought	 under	 climate	 change	 will	 have	 large	 negative	
consequences	for	carbon	fluxes	(Anderegg,	Schwalm,	et	al.,	2015;	
Schwalm	et	al.,	2017).	And	yet,	while	we	do	find	that	compounded	
drought	 further	 reduces	 tree	 growth	 and	 alters	 growth–climate	
sensitivities	 (Figures	 2b	 and	 3),	 ignoring	 compounded	 legacy	 ef‐
fects	in	our	prediction	scenarios	does	not	strongly	reduce	predic‐
tion	skill	(compare	full	vs.	NoCL	scenarios,	Figure	4d–f).	This	result	
arises	partly	due	to	the	construction	of	our	SAM	model,	given	the	
use	 of	 drought‐period‐specific	 importance	 weights	 (wt,m,dr)	 that	
capture	tree	responses	to	antecedent	climate,	where	the	drought	
period	weights	 are	 still	 applied	 in	 the	 NoCL	 prediction	 scenario	
(Table	1;	also	see	Figure	S2).	Anderegg,	Schwalm,	et	al.	(2015)	found	
that	drought	continued	to	influence	tree	growth	for	up	to	4	years	
after	a	drought	event;	this	type	of	legacy	effect	is	captured	by	our	
model(s)	 in	two	ways:	 (a)	via	the	antecedent	 importance	weights,	
which	suggest	that	climate	up	to	60	months	ago	 is	 important	for	
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understanding	 tree	 growth,	 and	 (b)	 via	 the	 effects	 parameters,	
which	 are	 allowed	 to	 change	 under	 different	 drought	 conditions	
(non‐drought,	 one	 recent	 drought,	 and	 compounded	 droughts).	
Prediction	error	in	the	NoCL	scenarios,	which	ignore	compounded	
drought	 (multiple	droughts	over	 the	past	4–5	years),	 is	 relatively	
small	 (Figure	 4)	 compared	 to	 other	 scenarios	 because	 the	 SAM	
model	 already	accounts	 for	 the	drought‐specific	 effects	of	 ante‐
cedent	climate	over	 this	 time	period	 (via	 the	 importance	weights	
wt,m,1

)	 such	 that	 past	 droughts	 affect	 the	 values	 of	 the	 anteced‐
ent	variables	that	are	used	to	predict	tree	growth.	The	differences	
in	 drought	 year	 responses	 are	 thus	 captured	by	 shifts	 in	 climate	
memory	 (Table	2).	 This	 suggests	models	 accounting	 for	 differing	
antecedent	climate	 responses	during	drought	periods,	or	at	 least	
multiple	years	of	antecedent	climate,	could	still	predict	tree	growth	
reasonably	well	under	compounded	drought.	 Incorporating	ante‐
cedent	climate	covariates	 into	models	of	 tree	growth	 in	 this	way	
more	accurately	captures	 the	plasticity	 in	 tree	growth	responses	
to	climate	via	the	physiological	processes,	such	as	NSC	storage	and	
hydraulic	conductance,	that	make	prediction	of	tree	growth	under	
variable	climate	so	challenging	(Trugman	et	al.,	2018).

We	showed	that	compounded	drought	events,	or	more	frequent	
or	 repeated	 drought	 conditions,	 further	 reduce	 growth	 and	 alter	
growth	responses	to	climate,	with	significant	variation	across	a	sin‐
gle	species’	range.	Systematic	error	in	growth	predicted	by	scenarios	
ignoring	legacy	effects	demonstrates	that	drought‐induced	changes	
in	 growth–climate	 sensitivities	 drive	 meaningful	 variation	 in	 tree	
growth.	 However,	 variation	 in	 prediction	 error	 suggests	 regional	
variation	in	resilience	of	plasticity	in	response	to	drought.	Scenarios	
ignoring	the	legacy	effects	of	drought	systematically	underestimate	
growth	during	 regional	drought	 in	 interior	P. ponderosa,	 suggesting	
changes	in	growth–climate	sensitivities	and	climatic	memory	in	these	
trees	 could	 represent	 beneficial	 physiological	 adjustments,	 while	
overestimates	 in	 the	 NW	 regions	 in	 combination	 with	 only	 small	
changes	in	memory	and	climate	response	suggest	growth	sensitivi‐
ties	in	these	trees	are	less	plastic	in	response	to	drought.	While	more	
frequent	drought	may	induce	larger	growth	suppressions,	our	results	
suggest	 genetic	 or	 population	 variation	within	 species,	 local	 adap‐
tation,	or	climatically	driven	variation	in	NSC	storage	dynamics	may	
complicate	 regional	 predictions	 of	 compounded	 drought	 impacts	
under	 global	 climate	 change.	Of	 course,	 we	 are	 inherently	 limited	
in	our	ability	 to	 interpret	 the	physiological	mechanisms	underlying	
observed	responses	to	drought	at	such	 large	spatial	scales,	but	we	
hope	our	discussion	of	 the	potential	physiological	 factors	underly‐
ing	growth	responses	to	compounded	drought	may	motivate	future	
experiments.

Not	 captured	 in	 these	 results	 are	 any	 increases	 in	 mortality	
risk	from	compounded	drought,	as	tree‐ring	records	are	biased	by	
design	 toward	 trees	 that	 survived	 drought	 events	 (Klesse	 et	 al.,	
2018;	 Peltier	 et	 al.,	 2016).	 For	 example,	 repeated	 drought	 would	
likely	 increase	the	risk	of	mortality	from	beetle	 infestation,	as	de‐
creased	NSC	reserves	could	limit	the	amount	and	effectiveness	of	
resin	defenses	(Manion,	1991;	McDowell,	Allen,	&	Marshall,	2010).	
While	some	experiments	have	focused	on	physiological	processes	

underlying	drought	 recovery	 like	hydraulic	conductance	 (e.g.,	Savi	
et	al.,	2016;	Yoshimura	et	al.,	2016),	multiyear	experiments	verify‐
ing	 changes	 in	 growth–climate	 sensitivity	 and	 physiology	 such	 as	
multiyear	declines	in	hydraulic	function	or	NSC	supply	(Trugman	et	
al.,	 2018)	 are	 necessary	 to	 synthesize	 a	 predictive	 understanding	
of	these	processes.	In	the	interim,	if	we	are	interested	in	using	sta‐
tistical	models	 to	explore	 the	mechanisms	 that	underlie	observed	
growth	 variability,	 consideration	 of	 the	 temporal	 complexity	 and	
plasticity	of	growth–climate	responses	is	essential.
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