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Summary

� Stomatal closure during drought inhibits carbon uptake and may reduce a tree’s defensive

capacity. Limited carbon availability during drought may increase a tree’s mortality risk, parti-

cularly if drought constrains trees’ capacity to rapidly produce defenses during biotic attack.
� We parameterized a new model of conifer defense using physiological data on carbon

reserves and chemical defenses before and after a simulated bark beetle attack in mature

Pinus edulis under experimental drought. Attack was simulated using inoculations with a con-

sistent bluestain fungus (Ophiostoma sp.) of Ips confusus, the main bark beetle colonizing this

tree, to induce a defensive response.
� Trees with more carbon reserves produced more defenses but measured phloem carbon

reserves only accounted for c. 23% of the induced defensive response. Our model predicted

universal mortality if local reserves alone supported defense production, suggesting substan-

tial remobilization and transport of stored resin or carbon reserves to the inoculation site.
� Our results show that de novo terpene synthesis represents only a fraction of the total mea-

sured phloem terpenes in P. edulis following fungal inoculation. Without direct attribution of

phloem terpene concentrations to available carbon, many studies may be overestimating the

scale and importance of de novo terpene synthesis in a tree’s induced defense response.

Introduction

Conifers produce a variety of secondary metabolites for
defense against herbivory (Bartwal et al., 2013; Celedon &
Bohlmann, 2019; Kopaczyk et al., 2020). Secondary metabo-
lites are a broad class of carbon-based molecules and, in coni-
fers, are typically dominated by mono-, sesqui-, and
diterpenes (Celedon & Bohlmann, 2019). Terpenes can be
critical to successful defense against bark beetles (Smith, 1961;
Manning & Reid, 2013; Erbilgin et al., 2017; Roth
et al., 2018). When bark beetles infest tree phloem, conifers
may increase the concentration and alter the phytochemical
diversity of terpenes in the phloem and the volume of resin
that delivers these terpenes in a process known as induction
(Smith, 1961; Raffa & Smalley, 1995; Manning &
Reid, 2013; Choi & Klessig, 2016; Chiu et al., 2017; Kolb
et al., 2019; Mageroy et al., 2020).

Carbon reserves provide a key substrate for the synthesis of ter-
penes in conifers (Wiley et al., 2016; Roth et al., 2018). Terpenes
carry high structural and energetic costs (monoterpenes contain
10 reduced carbon atoms; Gershenzon, 1994; Celedon &
Bohlmann, 2019). Trees must balance this carbon investment
against requirements of respiration, osmoregulation and growth
(Hartmann & Trumbore, 2016; Sapes et al., 2021; Blumstein
et al., 2022). The supply of carbon reserves available for defense
is further constrained when drought limits photosynthesis, a phe-
nomenon known to occur in many pine species (Sala & Mencuc-
cini, 2014; McDowell et al., 2022; Peltier et al., 2023;
Thompson et al., 2023). Because some beetle species increase
attacks during drought, a critical question is whether carbon
reserves are enough to fuel an induced response in trees (Raffa
et al., 2008; Boone et al., 2011; Hart et al., 2014; Marini
et al., 2017; McDowell et al., 2019; Huang et al., 2020a,b; Howe
et al., 2022a).
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Beyond the costs of phloem terpene induction, we do not
know what concentration of terpenes is required for trees to sur-
vive an attack by bark beetles. Dose–response experiments can
elucidate lethal concentrations of individual chemical species
required to kill particular beetle species. However, these experi-
ments only consider a small suite of chemicals, often individually
and not in biologically relevant combinations, and are conducted
under highly controlled, artificial laboratory conditions (Raffa &
Smalley, 1995; Zhao et al., 2011). An alternative approach to
understanding what terpene concentrations are required to repel
and defend against attacking beetles (assuming greater concentra-
tions of terpenes imbue greater defensive capacity) is the use of
mathematical equations to model conifer-bark beetle systems
(Ludwig et al., 1978; Berryman et al., 1989). Past models have
primarily focused on beetle and forest population dynamics
(Ludwig et al., 1978; Berryman et al., 1989; Křivan et al., 2016;
Seidl et al., 2016), although more recent models have incorpo-
rated the role of host resistance (Nelson & Lewis, 2008). Few stu-
dies have explicitly incorporated conifer-induced terpene
concentrations into such models (Berryman et al., 1989; Nelson
& Lewis, 2008; Huang et al., 2020a,b) and none have included
carbon reserves as a proximal driver. Models that account for the
dynamics of carbon allocation to defense with bark beetle
dynamics might allow us to identify what concentration of car-
bon reserves and terpenes are required for conifers to survive bark
beetle attacks. Such a model can be used to investigate underlying
mechanisms of tree–beetle interaction and to generate new
hypotheses about the role of terpene concentrations in tree resis-
tance against beetles (Goodsman et al., 2017, 2018) and different
attack densities. Incorporating attack density as a model para-
meter might further elucidate how variation in beetle density in
space and time affect conifer–bark beetle interactions.

Here, we develop a theoretical model of bark beetle–conifer
interactions and use a unique rainfall-exclusion experiment with
mature Pinus edulis (Engelmann) to parameterize and test this
model. Using trees that had already experienced 2 or 10 yr of
experimental throughfall exclusion (drought), we conducted an
inoculation experiment to simulate beetle attack-related demands
on defense and carbon reserves. Just before, and 2 wk after inocula-
tion, we measured carbon reserves (nonstructural carbohydrates;
NSCs) and phloem monoterpene concentrations. Because c. 50%
of droughted trees ultimately died from attack by bark beetles, we
incorporated these data into a dynamical model to investigate the
production and effectiveness of induced defense against lethal beetle
attack. We investigated three questions: First, what is the minimum
concentration of phloem terpenes a tree must produce to survive
attack by bark beetles? Second, are carbon reserve concentrations
predictive of defensive responses? And third, what is the relative role
of transported vs local carbon reserves towards induced defensive
responses? Compared to hydraulic failure or carbon starvation, the
role of dynamics in tree defensive chemicals in mortality, and their
interactions with insect pests, remains poorly understood (McDo-
well et al., 2022). Addressing these questions could improve our
understanding of the linkages between carbon, water, and defense
status that ultimately interact with insect pests to determine tree
mortality outcomes.

Materials and Methods

Site description and experimental design

Our experiment took place in a piñon–juniper woodland
c. 100 km south of Albuquerque, NM, USA in the Sevilleta
National Wildlife Refuge and Long-Term Ecological Research
site (34.386, �106.528°) and is described in full by Peltier
et al. (2023). Briefly, we studied the response of an extreme
drought, relative to average growing conditions at this site, on the
physiology of the semiarid conifer, Pinus edulis. We established
three new rainfall-exclusion plots in the winter of 2019, in addi-
tion to a control, and leveraged a preexisting long-term drought
plot installed in 2010. The three new rainfall-exclusion plots
simulate drought across a gradient of intensity: 45%, 75%, and
90% of total precipitation was removed year-round from each
plot. A 45% long-term drought plot (herein ‘Legacy’) established
in 2010 is identical in form to the three new plots and has been
in place since installation (Pangle et al., 2012). Between 2010
and 2015, an outbreak of the bark beetle Ips confusus killed many
of the mature P. edulis trees growing in this region. To prevent
mortality in the Legacy plot, trees were sprayed with an insecti-
cide (DragNet SFR, permethrin-based) from 2010 to 2015.

Construction of all plots followed a previously used design
outlined by Pangle et al. (2012). Briefly, each 40 × 40 m plot was
covered by large UV-resistant 0.3 cm thick polycarbonate sheets
that were used to create troughs at differing coverage intensities
corresponding to the precipitation removal target. Troughs were
installed below the crown of mature P. edulis trees at spacing
intervals sufficient to capture and divert 45%, 75%, or 90% of
total precipitation. Within each plot, six target trees located at
least 5 m from the plot edge were identified and monitored for
the duration of the experiment.

In June 2022 we conducted a fungal inoculation experiment
whereby all focal trees were inoculated with an ophiostomatoid-
fungus (Ophiostoma sp.) collected from the local bark beetle (Ips
confusus) population in 2021. This fungus is a consistent associate
of this beetle (c. 97% prevalence) and is a newly described (Six
et al., unpublished). Defense induction in Pinus typically occurs
in response to beetle-associated fungi (Keefover-Ring et al., 2016;
Denham et al., 2019; Kolb et al., 2019). Immediately before
inoculation we measured photosynthesis, phloem terpene con-
centrations, resin flow, and comprehensively quantified carbon
reserves (nonstructural carbohydrates; sugars and starch) in all
tissues (needle, twig, xylem, phloem, and coarse roots). After a
2-wk induction period (described in full below) these measure-
ments were repeated.

Fungal inoculation procedure

On 8 June 2022 we inoculated 26 trees with the bluestain fungus
to simulate attack by I. confusus. Previous work in other pine spe-
cies (Raffa & Smalley, 1995) has shown that inoculation with
some beetle-associated ophiostomatoid-fungi results in rapid
induction of terpene defenses. Before inoculation the fungus was
purified via single spore isolations from I. confusus collected near
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our experimental site. Cultures for inoculation were grown on
2% malt agar in Petri dishes and fungal plugs were taken from
the growing edges of the resulting colonies. On each tree, a
majority of the woody bark cortex was removed from a c. 3
× 3 cm area of the bole with a chisel, leaving the phloem intact. A
1/4-inch (0.64 cm) plug of phloem was removed and replaced
with a plug of the fungus in agar, after which the phloem plug
was replaced on top of the fungus. To separate the effect of
mechanical damage from the phloem punch and the introduced
fungus (Mercado et al., 2023), we separately removed a 1/2-inch
phloem punch from 8 off-plot trees to quantify the effect of
mechanical damage on the induced response of P. edulis. Simul-
taneously, we inoculated the same 8 trees but on different faces of
the main stem with the same fungus as used in this study. The
effect of mechanical damage alone on the induced response of
P. edulis was relatively small when compared to the effect of the
fungus (Supporting Information Fig. S1). Therefore, we pro-
ceeded with our experiment in the absence of a mechanical control.

Physiological measurements

We measured predawn water potential (Ψpd) using a
Scholander-type pressure chamber (PMS instruments, Albany,
OR, USA). Ψpd samples were collected at or 4 h before dawn,
stored in plastic bags with a moist paper towel, and kept inside
coolers in the shade to preserve humidity and prevent water loss
before measurement (Rodriguez-Dominguez et al., 2022). Net
photosynthesis (Anet) was measured on two branches each day
between 08:00 h and 11:00 h, using a Li-Cor 6800 (Lincoln,
NE, USA). Branches were in partial shade, with chamber condi-
tions as follows: PAR was set to 2000 μmol m�2 s�1, CO2 at
400 ppm, temperature at 25°C and humidity at 30%. All Anet
measurements were corrected per unit projected leaf area, which
was measured on scanned images of needles using the LEAFAREA

package (Katabuchi, 2015) in R (R Core Team, 2022).
Needle, twig, phloem, xylem, and root nonstructural carbohy-

drate (NSC) samples were all collected on the same day. We sepa-
rated needles from twigs on site, plucking each needle distally
from the fascicle. This ensured that no twig tissue was also mea-
sured with needle samples. Preinoculation phloem samples were
collected on the same day with a 13 mm diameter punch imme-
diately before inoculation was conducted on each tree, all on the
same day. To collect postinoculation phloem samples, we excised
the necrotic tissue surrounding the inoculation site 2 wk after
inoculation and split the tissue between NSC and defense mea-
surements. To sample bole and root xylem NSC, we used a
5.15 mm diameter increment bore (Haglof, Sweden) to c. 30 mm
depth. All NSC samples were microwaved on high for 90s within
4 h of collection and oven dried for 72 h at 65°C. In the lab,
NSC was analyzed according to Landhäusser et al. (2018) and is
fully described in Peltier et al. (2023).

To measure constitutive and induced phloem terpene concen-
trations, we collected phloem tissue samples before and 2 wk after
inoculation. To minimize the effect of mechanical damage on the
scale of the induced response, preinoculation phloem samples
were collected from regions perpendicular and at approximately

equal height to the site of fungal inoculation. To sample phloem,
we first removed most of the bark cortex. We then used a
12.7 mm diameter leather punch to remove the phloem, being
careful to leave the xylem undamaged, and immediately placed
the samples in liquid nitrogen. After 20 wk, on 22 June 2022,
the phloem tissue around the inoculation site (c. 4 × 8 cm) was
collected for analysis of terpenes. Terpene samples were placed
immediately into liquid nitrogen for transport and stored at
�80°C until they could be analyzed in the lab. We then installed
a plastic resin collector directly on to the phloem sampling site
and collected resin after 24 h, 48 h, 72 h, 1 wk, and 2 wk, using a
14 ml falcon tube, which was then later weighed to quantify the
resin mass. The mass of all falcon tubes was determined before
resin flow measurements and subtracted from the final mass.
Phloem terpene samples were analyzed in the lab following the
protocol described by Trowbridge et al. (2021).

Estimating the glucose cost of phloem terpenes We estimated
the maximum potential phloem terpene concentrations from
local carbon reserves, using phloem carbon reserves and the total
glucose cost per gram of terpene produced. We used a stoichio-
metric approach to determine the glucose cost of synthesis for
each terpene product from its biochemical pathway, following
work by De Vries et al. (1974) and Gershenzon (Gershen-
zon, 1994; Notes S1; Fig. S2). For each tree, we estimated the
maximum potential defenses that could be synthesized from prei-
noculation phloem NSC concentrations. This approach accounts
for all costs relating to carbon material, ATP, and reducing
power. Our results indicate that 1 g of monoterpenes will cost a
plant 3.34 g glucose (see Notes S2 for the full derivation).

To quantify the role of transported carbon reserves in phloem
terpene concentrations we used allometric scaling to estimate
whole-tree sugar and starch. We estimated the organ-level bio-
mass from root-collar diameter from Grier et al. (1992) and used
tissue-specific NSC concentrations to estimate whole-tree carbon
reserves in absolute grams. Using the glucose cost of terpenes, we
then calculated the maximum potential phloem terpenes that
could be synthesized from this new, larger value.

Model description

Overview The process of a bark beetle attack occurs in several
stages where different tree physiological processes may play a
role. The first step in a bark beetle attack can be considered
the pioneer phase, where a single or few beetles test a host’s
defensive capabilities (Blomquist et al., 2010). Upon attack,
pioneer beetles break through the bark cortex and are exposed
to potentially toxic oleoresin that flows from specialized ducts
located in the sapwood and phloem (Hood & Sala, 2015). A
tree that can produce a large resin response may successfully
kill pioneer beetles and avoid mass attack. Should pioneer bee-
tles succeed in entering the tree, pheromones are released that
signal to nearby beetles the presence of a viable host (Blom-
quist et al., 2010). Once beetles mass attack, tree survival
depends on both the sustained flux of resin to the site of attack
and the de novo synthesis of phloem terpenes via induction
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(though the general toxicity of these terpenes is not known for
this particular bark beetle species; Smith, 1961; Manning &
Reid, 2013; Chiu et al., 2017; Mageroy et al., 2020; Vázquez-
González et al., 2020). Drought can directly impact how trees
respond during both the pioneer and mass attack phases of a
bark beetle attack (Fig. 1).

To study whether the induced phloem terpene concentrations
trees produced from carbon reserves are enough for trees to sur-
vive a mass attack by bark beetles, we model the bark beetle–coni-
fer interaction as a bistable dynamical system. Although direct
evidence that terpenes are functional defensive compounds
against I. confusus, for which P. edulis is an obligate host, is not
known, we use evidence from other bark beetle-conifer systems
that suggests they may be effective at high concentrations
(Smith, 1961; Manning & Reid, 2013; Chiu et al., 2017;
Mageroy et al., 2020). To model how phloem terpene concentra-
tions correspond to a tree’s vulnerability to attack by bark beetles

(Boone et al., 2011), we use a set of ordinary differential
equations:

dD

dx
=

At

1þ t eαx
Eqn 1

dA

dx
=Ab 1� x

x c

� �
Eqn 2

where Eqn 1 models the change in defense concentrations as
an inverse-sigmoid function, with At as the amount of beetles
attacking the tree expressed as a percentage of the lethal bee-
tle attack density, Ab is the size of the beetle population
expressed as a percentage of the lethal beetle attack density,
t is the minimum proportion of the lethal attack density
necessary to induce a response, α is the induction rate relative
to nearby trees (see Assumption 4, below), and x represents

Fig. 1 How drought can predispose trees to bark beetle-induced mortality. Low Ψpd can inhibit photosynthesis, carbon reserves, and resin flow but may
increase a tree’s constitutive terpene concentrations. While greater constitutive terpene concentrations may reduce the probability of pioneer beetle
success (Assumption 2), low-resin flow may promote their success by providing a reduced barrier to entry, thus increasing the likelihood of a mass attack
and increasing a tree’s mortality risk. Once a tree has failed to overcome the pioneer beetle attacks, its mortality risk is modulated by available carbon
reserves which may be mobilized and used for the induction of new secondary metabolites. If carbon reserves are too low, given resin flow rates, trees will
fail to meet their minimum defensive needs and thus are more likely to die from a mass attack of bark beetles. α is relative response rate, xmax is the
maximum potential phloem terpene concentrations from carbon reserves, and xc represents the minimum phloem terpene concentrations a tree needs to
survive an attack by bark beetles. References: (1) Thompson et al., 2023; (2) Bryant et al. (1983), Herms & Mattson (1992) and Trowbridge et al. (2021);
(3) Netherer et al. (2015); (4) Cabrita (2018); (5) Fig. 3; (6) Fig. 4a; (7) Fig. 7.
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current defense concentrations. Here, we only consider the
scenario where At= Ab such that the scenario where beetles
kill the tree still exists (see Fig. 2). Eqn 2 represents the
change in beetle attack density Ab as a function of current
defense concentrations x relative to the maximum potential
defense concentrations xc. Our model formulation is based on
the following assumptions:

(1) Beetle attack density decreases linearly with increasing
defense concentrations (Berryman et al., 1989).
(2) Higher concentrations of phloem terpenes result in greater
tree defensive capacity (Boone et al., 2011).
(3) Mass attack is not required to induce the synthesis of
new phloem terpenes (corresponding to a very small t
value in (1)).

Fig. 2 Conceptual diagram of bark beetle–conifer interactions modelled as a dynamical system. Eqns 1 and 2 generate a dynamical system with three fixed
points. Panels (a–c) plot Eqns 1 and 2 as functions of At (the lethal threshold of beetles required to kill the tree, expressed as a %), Ab the size of beetle
population (expressed as a % of At), and carbon reserves in mg g�1 (x). The black curve models the change in tree defense concentrations as a function of
available carbon reserves (x; Eqn 1). The green line models the change in successful beetle attacks as a function of available carbon reserves (Eqn 2).
Importantly, the y-intercept of Eqn 2 is determined by Ab and the x-intercept is determined by xc, or the maximum defense potential from carbon reserves.
Holding Ab constant at At (so at least enough beetles are present to potentially kill the tree) and allowing xc to vary causes the appearance and/or
disappearance of the fixed points. Starting with low xc, shown in panel (a), only a single fixed point occurs where the beetles kill the tree. As xc increases,
three fixed points occur (panel b): two stable fixed points where either the beetles kill the tree or the tree kills the beetles, and an unstable fixed point
where both coexist, an impossibility thus highlighting the instability of this fixed point. As xc decreases, the stable fixed point where the tree kills the beetles
converges to the unstable fixed point of coexistence. At exactly xc= xmin, the two fixed points merge and a cusp point appears indicating a defensive
threshold below which tree survival is not possible. (d) maps all of the fixed points and their solutions as a function of xc. Note the cusp point, xmin, where
both curves meet.
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(4) Tree vulnerability is on a relative scale such that trees which
are relatively slow to respond to an attack tend to be attacked first
(Boone et al., 2011).
(5) Local carbon reserves are available for use in local defense
synthesis (Wiley et al., 2016; Raffa et al., 2017).

From these assumptions, we analyze Eqns 1 and 2 using a lin-
ear stability analysis (Strogatz, 2018), random walk (Grinstead &
Snell, 1997), and model-data comparison. These methods are
designed to identify stable and unstable points of the dynamical
system relevant to mortality or attack success outcomes.

Model parameterization To parameterize (1) and (2), we used
induction data from the experiment described above. We fix
At= Ab= 1, corresponding to 100% of the lethal attack density.
This allows us to compare the dynamics of trees with unknown
but potentially different lethal attack densities. We set the mini-
mum response threshold, t, to 0.001, reflecting the low number
of beetles necessary to induce a response from the host tree
(Assumption 3). To establish the relative response rate parameter,
α, we used resin flow data measured over a 2-wk span. We then
identified the date of maximum resin flow, rmax,i for tree i and
ordered trees from fastest to slowest, based on rmax,i. For example,
trees that reached their maximum resin flow 24 h from inocula-
tion had α = 1. Subsequently, all other trees were set relative to
this date in hours, such that if rmax,i= 72 h, this would corre-
spond to α ≅ 0.33. In our study, seven trees did not produce any
resin. Because α is expressed as a ratio of maximum resin flow to
current resin flow ðα≔ rmax,i

r current,i
Þ it is undefined when resin flow is

zero and thus (1) cannot be solved. We thus exclude these seven
trees from further analysis. A full table of parameter definitions is
included in Table 1 and alpha values for each tree is included in
Table 2.

Linear stability analysis To identify the minimum concentra-
tion of phloem terpenes required for tree survival from bark bee-
tle attack to still be possible, we use a linear stability analysis to
evaluate the qualitative dynamics of (1) and (2). We are inter-
ested in several features of this system of equations but, most
importantly, the fixed points. The fixed points represent
steady-state solutions where the rate of change is equal to zero
(Strogatz, 2018). To find these states we set (1) equal to (2) for a
given set of parameters (indicating the rate of change of defense
synthesis equals the rate of attack by beetles), yielding:

A 1� x

x c

� �
=

A

1þ t eαx
Eqn 3

Solutions that satisfy this equality can be summarized using a
bifurcation diagram. At most, this system of equations can yield
three fixed points (Fig. 2b): a stable fixed point where beetles kill
the tree and defenses are low (upper left point on Fig. 2b),
another stable fixed point where the tree kills the beetles and
defenses are higher (lower right point on Fig. 2b), and an
unstable fixed point where the beetles and tree coexist (Christian-
sen et al., 1987; Berryman et al., 1989). Uniqueness and existence
of these fixed points is derived in Notes S2.

Our focus is on identifying the minimum concentration of
phloem terpenes required for tree survival from bark beetle attack
to still be possible. In the context of (4), we define a vulnerable tree
as any individual whose maximum defense potential, xc, is below
some critical threshold, xmin. To find xmin, consider Eqn 2, which
models the beetle dynamics and is the only equation containing
the parameter xc. If xc increases (corresponding to greater carbon
reserves), the unstable fixed point (open circle on Fig. 2a–c)
approaches the stable fixed point where beetles kill the tree and
eventually both disappear, leaving only the stable fixed point of
tree survival (Fig. 2c). Thus, having a greater maximum defense
potential from carbon reserves for a given response rate implies
trees can better defend themselves against attacking beetles. As xc
decreases, the opposite occurs, and the unstable fixed point
now approaches the stable fixed point where the tree kills the bee-
tles (Fig. 2a). xc occurs when these two points merge at the cusp
point (Fig. 2b dashed green line & Fig. 2d). For each tree, we ana-
lytically derive xc (Notes S2) and compare whether observed and
maximum potential defenses are above or below this threshold.

Estimating mortality risk Eqns 1–3 are deterministic represen-
tations of bark beetle–conifer dynamics that are subject to some
level of stochasticity (Sharma et al., 2015; Yuan et al., 2022). In
other words, just because a tree is weak and vulnerable does not
mean that it will always be attacked by beetles nor does it mean
that conditions cannot change allowing trees to recover (but see
Anderegg et al., 2015). To model these stochastic elements and
thus explore how environmental perturbations might impact the
mortality risk of conifers, we simulate two random walks on the

Table 2 Relative response rate (α), number of mature Pinus edulis trees
with the corresponding response rate (N), cusp point (xc), number of
observed dead trees in each category, and number of predicted dead
trees.

α N xc Observed Predicted

0 11 NA NA NA
0.071 5 141.919 2 4
0.143 4 71 1 2
1 10 10 1 0

Table 1 Parameter definitions.

Parameter Units Definition

A % Proportion of lethal beetle attack density
t % Minimum proportion of lethal beetle attack density

necessary to trigger a tree’s induced response
system

α % Relative response rate of tree’s induced response
system

x mg g�1 Total amount of a tree’s induced defenses
xmax mg g�1 Maximum potential amount of a tree’s induced

defenses calculated from total nonstructural
carbohydrates

xc mg g�1 Minimum amount of defenses a tree needs to
produce to survive

σ Unitless Variance term for the random walk

� 2024 The Author(s).

New Phytologist� 2024 New Phytologist Foundation.

New Phytologist (2024) 244: 654–669
www.newphytologist.com

New
Phytologist Research 659

 14698137, 2024, 2, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.20051 by U

niversity O
f N

evada L
as V

egas L
ibraries, W

iley O
nline L

ibrary on [27/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



bifurcation diagram (Fig. 2d) generated in Eqn 3 and evaluate
how a tree’s mortality risk changes as parameter sets vary.

A random walk is a special case of a Markov chain describing
the movement of a random variable, X, according to its current
location plus random noise:

X tþ1 =X t þ N μ, σ2
� �

Eqn 4

where Xt is the current location of X, Xt+1 denotes the realized
observation of X at the next time point, and N μ, σ2ð Þ is normally
distributed step size with mean μ= 0 and variance
σ2 = 10 or 100. In a low-variance world (σ2 = 10), trees are
highly sensitive to initial conditions suggesting their physiological
status at attack initiation is a major predictor of mortality. In a
high-variance world (variance σ2 = 100), trees can move further
from their starting location, reflecting a highly stochastic environ-
ment or highly responsive tree. Under each scheme, and for each
tree-level parameterization, we ran 25 individual random walks
for 1000 time-steps each (Fig. S3).

To test if there is an interaction between time to maximum
resin flow (α; i.e. how quickly a tree responds to attack) and the
minimum phloem terpene concentration required for trees to
survive an attack (xc). We simulated 1000 measurements of
defense concentrations incremented by 0.1 from 0.1 to 1, repre-
senting potential α values (resulting in 10 000 simulated mea-
surements). For each α, we estimated the cusp point (xmin where
bistability still occurs; Notes S2) and classified each measurement
as either above or below that threshold (dead or alive). This simu-
lation was replicated 1000 times.

Model-data comparison By August of 2022, 43% of all trees at
the site were killed by bark beetles. This provided a unique
opportunity to test our dynamical model against data. First, using
the xc values derived in (2) we classified each tree as vulnerable or
not vulnerable using α (relative response rate), xc (maximum
defense potential from preinoculation carbon reserves), and mea-
sured defense concentrations. We tested this classification to eval-
uate how well this model predicts whether trees live or die.
Finally, we compared the proportion of dead trees in our plots to
what our model predicts under a small-variance and
large-variance random walk to evaluate whether the mortality we
observed exceeded what could be predicted under random noise.

Results

The carbon cost of defenses

Following our derived glucose costs of monoterpenes, across all
trees, the average concentration of phloem terpenes that could have
been synthesized from measured phloem carbon reserves alone was
just 9.1 mg g�1 (�0.1mg g�1). This was significantly less than the
average measured phloem terpene concentrations (41mg g�1,
�5.1, t-test, P< 0.05, t= 7.026, df= 47). That is, trees produced
an order of magnitude more phloem terpenes than expected if local
carbon reserves were the sole source of carbon (Fig. 3). Using
whole-tree carbon reserves for comparison, the maximum

concentration of phloem terpenes that could be produced on aver-
age was 48.8mg g�1 (�12.65mg g�1). Notwithstanding the chal-
lenges of phloem transport during drought (Sevanto, 2014), the
multiple demands for carbon reserves that would further reduce
this number (Dietze et al., 2014; Sapes et al., 2021), or the fact that
we saw little change in carbon reserves during the experiment
(Fig. S5), the disparity between observed and predicted phloem ter-
penes appears small if trees can use all of their carbon reserves
(Fig. S6). Put another way, the observed phloem terpene concen-
trations measured after the inoculation would have required c.
90% of our estimate of whole-tree carbon reserves.

Trees with slower response rates are more likely to die

On average, the trees in our study took c. 4 d (�1 d) to reach
maximum resin flow (Table 2). The relative response rate

α ¼ No: days to max resin flow of fastest tree
No: days to max resin flow of current tree

� �
of individual trees, how-

ever, varied considerably. 38% of the trees in our study reached
maximum resin flow rates within 24 h (α= 1), 15% of trees
reached maximum resin flow rates within 7 d (α= 0:143), and
19% of trees reached maximum resin flow rates in 2 wk
(α= 0:071). 27% of trees produced no resin and thus could not
be used to parameterize our model because the solution for α
would be undefined (i.e. dividing by zero; n= 7).

We expected that trees that responded more quickly to initial
attack by bark beetles by exuding a lot of resin quickly would require
lower concentrations of phloem terpenes to survive an attack
(Assumption 2). This would occur because resin is often the first
defense a tree has against bark beetles, and a tree’s capacity to physi-
cally repel beetles with resin should reduce the likelihood that beetles
enter the tree. In our model, the cusp point (xc), or minimum
phloem terpene concentration where tree survival is still possible (see
Fig. 2), increased exponentially as relative response rate decreased
(Fig. S4). Trees that maximized resin flow within 24 h of inocula-
tion (α= 1) could still survive with extremely low-phloem terpene
concentrations (xc= 10mg g�1 DW). Below 141.919mg g�1 of
phloem terpenes, the slowest trees to maximize resin flow
(α= 0:071, 14 d) became vulnerable to bark beetle attack (Fig. 4b).
Our model predicted that among the fastest trees to maximize resin
flow in response to inoculation (i.e. α= 1; 24 h), all had sufficient
defenses to avoid mortality (Fig. 5c). Two of the four trees that took
7 d to reach maximum resin flow rates (α= 0:143; 10% of the 19
trees analyzed here) had observed phloem terpene concentrations
97.4% and 63.1% below the lethal threshold (71mg g�1), respec-
tively. Among the five trees that took 14 d to reach maximum resin
flow rates (26% of trees), four had observed phloem terpene concen-
trations 69% (�9%) below the lethal threshold of 141.919mg g�1.
Among the trees in our study for which the model could parameter-
ized, we predicted that 42% of trees would be vulnerable to attack
(n= 8). In other words, these eight trees had maximum phloem ter-
pene concentrations that were on average 150% (�38%) below the
minimum they would need to survive if 100% of the lethal density
of bark beetles attacked. Thus, our model predicts a mortality rate
that is just 1% lower than what we observed in our study (predicted
42% vs observed 43%, respectively).
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Among the 19 trees examined in the model, we predicted 11
would survive and eight would die. Our model only misclassified
three trees as dead (Fig. 6), each in a different drought intensity
(45%, 75% and 90%). This corresponds to a 68% correct classifi-
cation rate (we observed 13 dead and six living trees of the 19 con-
sidered in this model; Fig. 6). Only one tree that died in our
experiment was classified as not vulnerable, thus most of the mis-
classification was in trees with low defenses that did not die. This is
not surprising since this model only predicts vulnerability and not
mortality and does not account for beetle aggregation behavior.

Mortality risk is greater in a low-variance world

We found that trees in the small-variance simulation (σ= 10) were
more likely to become vulnerable to attack by bark beetles, com-
pared to those in the large-variance simulation (σ= 100; Fig. 5c).
This was most strongly pronounced in trees that took 2 wk to
reach maximum resin flow (i.e. when α= 0:071), where the

mortality risk was 14% in the small-variance simulation and< 1%
in the large-variance simulation. However, as trees approached
maximum resin flow rates within 24 h (α= 1) the mortality risk
decreased to a minimum of 0.9% when σ= 10. Interestingly,
mortality risk (or probability that a tree becomes vulnerable to
attack by bark beetles; see Fig. 2) increased in the large-variance
simulation (σ= 100) to 1.9% when trees were faster to respond.
Thus, when perturbations are sufficiently large, having a fast
response rate is not necessarily enough to entirely avoid mortality
risk. That said, these probabilities of mortality are all very low
(< 10%) and thus if the driver of mortality risk is simply random
noise, trees are unlikely to be successfully attacked by bark beetles.

Defense amount and rate describe mortality risk

Our simulation of 10 000 defense measurements highlights the
potential tradeoff between how quickly a tree responds to attack
relative to nearby trees (α) and its ability to de novo synthesize (or

Fig. 3 Stored nonstructural carbohydrates are not enough to synthesize induced defenses. Using phloem total NSC (sugar + starch), we calculated the
maximum potential monoterpenes each mature Pinus edulis tree could produce. We assume that stomata are closed and thus all energetic needs are met from
carbon reserves. For all but 8 trees (red circles in a, b), the observed defense concentrations exceeded what could be produced from NSCs alone. Here, points
represent individual trees (n= 26). In (a), black and red points represent individual trees used in the regression analysis (solid blue line). The dotted black line in
(a) is a continuous estimate of maximum defense potential from carbon reserves. In (b), the maximum potential terpenes from NSC (x-axis) are plotted against
the observed terpenes (y-axis). The black line in (b) represents the 1 : 1 line. As with (a), 18 out of 26 trees synthesized more terpenes than NSC alone could
produce. This discrepancy may be due to the relatively local effects of the inoculation, suggesting trees may have transported resources from elsewhere in the
bole to the site of inoculation. The shaded region in (a) indicates the 95% confidence interval of the regression line.
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translocate) phloem terpenes (xc). For trees that produced maxi-
mum defenses below 10 mg g�1, the mortality risk was 100%
whenever the relative response rate was greater than 24 h

(α< 0:9). Yet, even when trees responded within 24 h (α= 1),
mortality risk still exceeded 50% as long as phloem terpene con-
centrations were at or below 10 mg g�1 (Fig. 7). With phloem

Fig. 4 Slow trees are more vulnerable than fast trees to attack by bark beetles. A plots Eqns 1 and 2 for different parameter values of α (relative response
rate) and xc (maximum potential terpenes at the cusp point) values derived from our experiment with Pinus edulis. xc (tangent of Eqn 2, red line, on Eqn 1,
black line) are shown on the diagonals, indicating the minimum concentration of phloem terpenes required for the stable state of tree survival to still be
possible. (b) shows bifurcation diagrams for each value of α (relative induction rate). As α decreases (trees respond slower to attack), the location of the
cusp point moves further to the right. This corresponds to a higher minimum defense threshold before trees enter the vulnerable state, or the last point
when the fixed point of tree survival still exists. Intuitively, this implies that slow-responding trees must mount larger defensive responses to survive attack
by bark beetles.
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terpene concentrations increasing slightly to 17.5 mg g�1, mor-
tality risk fell from 100% to just 25% when tree resin flow rates
were maximized within 40 h (α= 0:6) and 0 if trees maximum
resin flow rates were reached within 34 h (α ≥ 0:7). This pattern
continued when phloem terpene concentrations were at
71 mg g�1, with a drop in mortality risk from 100% to 0% as
long as maximum resin flow rates occurred within the first 240 h
from initial attack (α> 0:1). When defense concentrations were,
on average, 141.919 mg g�1, the mortality risk was almost surely
0 (Fig. 7).

Discussion

If local carbon reserves were insufficient to support the induced
phloem terpene concentrations we observed, then why were mea-
sured defense concentrations so high? Because we quantified the
total induced phloem terpenes as the difference between the pre-
and postinoculation terpene concentrations, we cannot attribute
this discrepancy to elevated local constitutive terpenes. It is likely

that trees in our study imported defenses or carbon reserves from
elsewhere in the bole to the site of inoculation. Phloem terpenes
are synthesized in specialized epithelial cells that form resin ducts
that span the sapwood and phloem of conifers (Ro & Bohl-
mann, 2006). These resin ducts also are a form of long-term sto-
rage of terpenes which are the dominant chemical found in
conifer resin (Vázquez-González et al., 2021, 2022). Thus, a sin-
gle phloem punch on the bole of a tree could cause the influx of
stored resin and terpenes to that site, such that terpenes sampled
at that site represent much more than local production (Table 3).

The observation that induced phloem terpene concentrations
in response to a fungal inoculation far exceeded what local carbon
reserves could support suggests inoculation studies may be over-
estimating the concentration of defenses that are newly synthe-
sized (Fig. 3). Ultimately, only a maximum of c. 13% (�9.9%)
of the measured phloem terpene concentrations could be attribu-
ted to local carbon reserves. Thus, trees become more vulnerable
to bark beetle attack during drought because carbon reserves can-
not support new terpene synthesis. However, even the maximum

Fig. 5 A trees vulnerability depends on tree physiological status before attack. (a, b) show five representative samples of the random walk approach (each
shown in a different color) used to simulate stochasticity in our dynamical system. In (a), trees show high sensitivity to initial conditions, such that the
points in the random walk don’t move far from the starting point. In (b), trees move widely across the sample space but seldom fall beyond the cusp point
avoiding the region of high vulnerability (shaded grey region) to bark beetles. (c) plots the stationary probabilities that trees fall below the cusp point and
are thus vulnerable. Our model suggests that the observed proportion of trees that are vulnerable to bark beetles far exceeds what we would expect under
random noise. σ indicates the SD.
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defense potential here is likely larger than what trees can actually
synthesize de novo, as carbon must be allocated to multiple sinks
and defenses may include more expensive (C-intensive) com-
pounds. Trees have numerous carbon demands that would simul-
taneously deplete available reserves, such as maintenance
respiration. Trees also produce sesquiterpenes (15 C atoms),
diterpenes (20 C atoms), and phenolics, and partitioning among
these metabolites is not clear. Partitioning carbon reserves
among these groups would yield lower estimates of a tree’s defen-
sive potential. Greater phytochemical diversity could, in turn,
increase the effectiveness of a tree’s defenses (Richards
et al., 2016) and avoid autoxicity from having too much of a sin-
gle compound (though evidence of this in pines is restricted to
seedlings; see Fernandez et al., 2008). Inoculation experiments
are popular for measuring induced responses in conifers during
drought (Keefover-Ring et al., 2016; Cale et al., 2017; Kolb
et al., 2019; Nagel et al., 2022). Without simultaneous measure-
ments of carbon reserves and terpene costs, studies that use point
measurements at a single inoculation site could be overestimating
the scale of de novo terpene synthesis in many species. This may
be caused by several issues. First, a mass attack by bark beetles
occurs over the entire surface area of a tree stem, meaning that
our measurement of observed phloem terpenes would be diluted
because less resin would be available at a single attack location on
the bole. Thus, the actual defensive capacity of trees may be sig-
nificantly less than what our experiment and model suggest.

Second, because we grew fungus on agar plates before inocula-
tion, the fungus was likely introduced at a greater concentration
and level of activity than may be normally introduced by beetles
alone. As a result, it is possible that trees yielded a larger induced
response at the site of inoculation. Tuning the concentration of
fungus introduced via inoculation to the concentration carried by
beetles may yield more precise estimates of the induced response
of conifers.

An important limitation of our approach is the inability to
parameterize this specific model for the seven trees that did not
response to fungal inoculation. While we do not know the reason
why these trees lacked a response, it is possible that our inocula-
tion of a single site on the bole was not sufficient to induce a
response. This suggests that Assumption 3, that the minimum
beetle attack density to trigger defense induction is small, may be
incorrect. While experimentally determining this threshold para-
meter by varying the number of inoculations on a tree may be
possible, the fact that some of our trees did respond to a single
inoculation suggests this parameter is dynamic and potentially
tree-specific. It is also possible that these seven trees did yield
resin but simply took longer than our 2-wk measurement period
was able to capture. Assuming this is the case, we conducted a
sensitivity analysis on these seven trees by altering their time to
maximum resin flow beyond the 2-wk period. We tested four
alternatives: trees took either 3, 4, 5, or 6 wk to maximize resin
flow. We re-ran our model under these conditions and tested the

Fig. 6 The bistable model of bark beetle–conifer
interactions predicts which trees are killed (n= 4)
with high accuracy. Mature individuals of Pinus
eduliswere classified as alive or dead based on
whether observed phloem terpene concentrations
exceeded, or were below, the cusp point. We
then compared these results to whether trees
were alive or dead in the ecosystem drought
experiments. Bars represent the proportion of
total observed in each class that were correctly
classified (black) and incorrectly classified
(orange) as either alive or dead.
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general predictive ability of our model. Under all four alternative
scenarios, our model proved to be robust with a correct classifica-
tion rate of 68% under each scenario (Fig. S7). Of these seven
trees, two trees survived the outbreak of I. confusus that followed
our experiment. One of these trees was exposed to drought for
more than a decade (Peltier et al., 2023) and the other was
exposed to a 75% decrease in precipitation. While the exact cause
of these trees’ survival is not known, it is possible that severe
drought contributed to nutrient limitation in these trees (Houle
et al., 2016; Hevia et al., 2019; Gonzalez de Andres et al., 2022),
making them inhospitable to bark beetle larvae (Six &
Elser, 2019). Future work should investigate the impacts of
drought on host tree – bark beetle stoichiometries.

Our results further emphasize the limit of local carbon reserves
as the sole energy source for induced production of terpenes in
conifers (Christiansen et al., 1987; Berg et al., 2006; Hart
et al., 2014; Kolb et al., 2019). If trees were only able to use their
stored carbon reserves to mount a defensive response, mortality is
highly likely (Fig. 5c). This is consistent with many
landscape-scale studies that have shown a link between regional
drought and bark beetle outbreaks (Hart et al., 2014; Seidl
et al., 2016). Our model’s capacity to accurately reflect these
dynamics and correctly predict mortality (Fig. 6) likely comes

from incorporating both induced and constitutive defenses,
which can play critical roles in mediating bark beetle attacks in
conifers (Gaylord et al., 2013; Hood & Sala, 2015; Kolb
et al., 2019; Nagel et al., 2022). However, the mortality rates pre-
dicted by our model and observed in our study were well above
what could be predicted if beetles were attacking and killing trees
simply by random chance (Fig. 5). This highlights the impor-
tance of interactions among multiple co-mechanisms of drought
mortality (e.g. hydraulic failure, carbon starvation, and biotic
attack; McDowell et al., 2022) in modulating the vulnerability of
conifers to secondary-aggressive bark beetles.

Finally, we link our concept of relative response rate (α) to
phloem terpenes and how quickly a tree responds to attack
(Fig. 7). We suggest this could be useful in rapid field assays of
individual tree resilience to future bark beetle attack as resin flow
is a commonly assessed physiological indicator (Gaylord
et al., 2013; Hood & Sala, 2015). Trees producing resin more
quickly may compensate for lower terpene concentrations by
repelling pioneer beetles, possibly limiting the likelihood of a
mass attack. Slow resin flow means trees must generate a larger
induced response to survive. This highlights known tradeoffs
between investment in constitutive vs induced defenses (Sampe-
dro et al., 2011; Moreira et al., 2014; but see Runyon

Fig. 7 How quickly trees respond to attack is important to their survival. Across a range of α values we simulate the probability of vulnerability given a
tree’s maximum defense potential. For trees with the highest defenses, vulnerable is almost surely avoided. Yet, as tree maximum defense potential
approaches the minimum, the probability of mortality never falls below 50% even for the fastest trees. Points represent ensemble means of 1000
simulations. Lines are logistic regressions.

� 2024 The Author(s).

New Phytologist� 2024 New Phytologist Foundation.

New Phytologist (2024) 244: 654–669
www.newphytologist.com

New
Phytologist Research 665

 14698137, 2024, 2, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.20051 by U

niversity O
f N

evada L
as V

egas L
ibraries, W

iley O
nline L

ibrary on [27/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



et al., 2022; Fig. S7). Trees constitutively producing large quanti-
ties of secondary metabolites may have lower carbon reserves
and/or nutrient availability (Sampedro et al., 2011; Trowbridge
et al., 2021), potentially limiting their induced defensive capa-
city, as well as resilience to other stressors and disturbance (Var-
gas et al., 2009; Villari et al., 2014; D’Andrea et al., 2019; Reed
& Hood, 2023). Thus, trees that maximize constitutive resin
flow may be better at fending off attacking beetles simply because
the minimum concentration of induced phloem terpenes
required for survival is lower (Vázquez-González et al., 2020;
Fig. 3). Identifying tradeoffs in conifer constitutive and induced
defense in the context of carbon reserves should be explored in
future studies. Other constitutive defenses such as heartwood for-
mation, bark thickness, oxaloacetate crystals, or thorns may
represent additional areas where species-level tradeoffs with car-
bon reserve dynamics and growth may occur (Shigo & Hil-
lis, 1973; Hudgins et al., 2003; Hanley et al., 2007).
Quantifying the carbon cost of these tradeoffs may reveal key
traits associated with vulnerability to herbivory under progres-
sively severe drought conditions.

While our results demonstrate that local carbon reserves are
insufficient to support the induced response of conifers during
drought, there are several key limitations that should be discussed.
First, our model only classifies trees as vulnerable or not vulnerable
while predicting mortality itself requires integration of multiple
exogenous factors, such as beetle behavior and population
dynamics. A tree’s carbon balance is only one part of the herbivory
dynamic since trees must be discovered and attacked at sufficient

levels for mortality to occur (Raffa & Berryman, 1983; Boone
et al., 2011.). Phytochemical diversity, in addition to total terpenes,
has been linked to tree survival since different combinations of che-
micals can enhance (or reduce) conifer resin toxicity (Trowbridge
et al., 2016). While the direct incorporation of chemical diversity
or effective defenses is not addressed here, it is important for future
studies to consider. Finally, we also assumed zero photosynthesis
during this time, given our measurements of zero assimilation in
these trees, but it is possible we missed brief and small amounts of
early morning carbon uptake that may contribute to defense pro-
duction exceeding measured carbon reserves. However, we argue
this is unlikely to explain the large mismatch between local carbon
reserves and defense production, given translocation rates were
probably also limited (Sevanto, 2014) during this extremely dry
part of the season which was amplified by throughfall removal
treatments (ψmin=�3.2MPa).

Conclusion

Our model-data fusion provides rare insight into the energetic
costs of induced conifer terpene synthesis in response to simu-
lated bark beetle attack. Our results suggest that a tree’s local car-
bon reserves are insufficient to meet the defensive needs of
conifers during attack by bark beetles (Fig. 3). The current range
of P. edulis is experiencing a megadrought, afflicting the western
US for the past two decades (Williams et al., 2020, 2022) which
has already predisposed this species to widespread bark beetle-
induced tree mortality (Breshears et al., 2005). While drought-
induced vulnerability to bark beetles is well documented for
many conifer species, the mechanisms by which this vulnerability
occurs (and the drivers of its temporal variation) remains poorly
understood (McDowell et al., 2022). Our model and data pro-
vide strong evidence that drought-exposed trees have a reduced
ability to synthesize new terpenes in their phloem and are thus
more vulnerable to bark beetles (Boone et al., 2011; McDowell
et al., 2019). Yet, the finding that carbon reserves played only a
minor role in the observed induced phloem terpene concentra-
tions indicates that mortality is not just a function of a tree’s car-
bon balance at the time of attack. Instead, our results highlight
the role of a tree’s predisposition toward investment in constitu-
tive defense (either genetic or legacy effects; Clark et al., 2012;
Blumstein & Hopkins, 2021; Six et al., 2021) coupled with its
ability to synthesize new phloem terpenes are interacting ele-
ments that together determine whether a tree can defend itself
from attacking bark beetles (Bryant et al., 1983; Tuomi
et al., 1988). Improved empirical evidence of these theoretical
tradeoffs across taxa and ecosystems will improve our ability to
predict and potentially manage against future outbreaks of
destructive herbivores.
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921–938.

Trowbridge AM, Bowers MD, Monson RK. 2016. Conifer monoterpene

chemistry during an outbreak enhances consumption and immune response of

an eruptive folivore. Journal of Chemical Ecology 42: 1281–1292.
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